就这五点,5分钟彻底搞清楚Linux的I/O模型及复用【程序员必备】
liebian365 2024-10-27 13:13 22 浏览 0 评论
目录
I/O 模型
- 阻塞式 I/O
- 非阻塞式 I/O
- I/O 复用
- 信号驱动 I/O
- 异步 I/O
- 五大 I/O 模型比较
I/O 复用
- select
- poll
- epoll
- 工作模式
- 应用场景
欢迎关注笔者,优质文章都在这里等你。
一、I/O 模型
一个输入操作通常包括两个阶段:
- 等待数据准备好
- 从内核向进程复制数据
对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待数据到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复制到应用进程缓冲区。
Unix 有五种 I/O 模型:
- 阻塞式 I/O
- 非阻塞式 I/O
- I/O 复用(select 和 poll)
- 信号驱动式 I/O(SIGIO)
- 异步 I/O(AIO)
阻塞式 I/O
应用进程被阻塞,直到数据从内核缓冲区复制到应用进程缓冲区中才返回。
应该注意到,在阻塞的过程中,其它应用进程还可以执行,因此阻塞不意味着整个操作系统都被阻塞。因为其它应用进程还可以执行,所以不消耗 CPU 时间,这种模型的 CPU 利用率会比较高。
下图中,recvfrom() 用于接收 Socket 传来的数据,并复制到应用进程的缓冲区 buf 中。这里把 recvfrom() 当成系统调用。
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);
非阻塞式 I/O
应用进程执行系统调用之后,内核返回一个错误码。应用进程可以继续执行,但是需要不断的执行系统调用来获知 I/O 是否完成,这种方式称为轮询(polling)。
由于 CPU 要处理更多的系统调用,因此这种模型的 CPU 利用率比较低。
I/O 复用
使用 select 或者 poll 等待数据,并且可以等待多个套接字中的任何一个变为可读。这一过程会被阻塞,当某一个套接字可读时返回,之后再使用 recvfrom 把数据从内核复制到进程中。
它可以让单个进程具有处理多个 I/O 事件的能力。又被称为 Event Driven I/O,即事件驱动 I/O。
如果一个 Web 服务器没有 I/O 复用,那么每一个 Socket 连接都需要创建一个线程去处理。如果同时有几万个连接,那么就需要创建相同数量的线程。相比于多进程和多线程技术,I/O 复用不需要进程线程创建和切换的开销,系统开销更小。
信号驱动 I/O
应用进程使用 sigaction 系统调用,内核立即返回,应用进程可以继续执行,也就是说等待数据阶段应用进程是非阻塞的。内核在数据到达时向应用进程发送 SIGIO 信号,应用进程收到之后在信号处理程序中调用 recvfrom 将数据从内核复制到应用进程中。
相比于非阻塞式 I/O 的轮询方式,信号驱动 I/O 的 CPU 利用率更高。
异步 I/O
应用进程执行 aio_read 系统调用会立即返回,应用进程可以继续执行,不会被阻塞,内核会在所有操作完成之后向应用进程发送信号。
异步 I/O 与信号驱动 I/O 的区别在于,异步 I/O 的信号是通知应用进程 I/O 完成,而信号驱动 I/O 的信号是通知应用进程可以开始 I/O。
五大 I/O 模型比较
- 同步 I/O:将数据从内核缓冲区复制到应用进程缓冲区的阶段,应用进程会阻塞。
- 异步 I/O:不会阻塞。
- 阻塞式 I/O、非阻塞式 I/O、I/O 复用和信号驱动 I/O 都是同步 I/O,它们的主要区别在第一个阶段。
- 非阻塞式 I/O 、信号驱动 I/O 和异步 I/O 在第一阶段不会阻塞。
二、I/O 复用
select/poll/epoll 都是 I/O 多路复用的具体实现,select 出现的最早,之后是 poll,再是 epoll。
select
int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
有三种类型的描述符类型:readset、writeset、exceptset,分别对应读、写、异常条件的描述符集合。fd_set 使用数组实现,数组大小使用 FD_SETSIZE 定义。
timeout 为超时参数,调用 select 会一直阻塞直到有描述符的事件到达或者等待的时间超过 timeout。
成功调用返回结果大于 0,出错返回结果为 -1,超时返回结果为 0。
fd_set fd_in, fd_out; struct timeval tv; // Reset the sets FD_ZERO( &fd_in ); FD_ZERO( &fd_out ); // Monitor sock1 for input events FD_SET( sock1, &fd_in ); // Monitor sock2 for output events FD_SET( sock2, &fd_out ); // Find out which socket has the largest numeric value as select requires it int largest_sock = sock1 > sock2 ? sock1 : sock2; // Wait up to 10 seconds tv.tv_sec = 10; tv.tv_usec = 0; // Call the select int ret = select( largest_sock + 1, &fd_in, &fd_out, NULL, &tv ); // Check if select actually succeed if ( ret == -1 ) // report error and abort else if ( ret == 0 ) // timeout; no event detected else { if ( FD_ISSET( sock1, &fd_in ) ) // input event on sock1 if ( FD_ISSET( sock2, &fd_out ) ) // output event on sock2 }
poll
int poll(struct pollfd *fds, unsigned int nfds, int timeout);
pollfd 使用链表实现。
// The structure for two events struct pollfd fds[2]; // Monitor sock1 for input fds[0].fd = sock1; fds[0].events = POLLIN; // Monitor sock2 for output fds[1].fd = sock2; fds[1].events = POLLOUT; // Wait 10 seconds int ret = poll( &fds, 2, 10000 ); // Check if poll actually succeed if ( ret == -1 ) // report error and abort else if ( ret == 0 ) // timeout; no event detected else { // If we detect the event, zero it out so we can reuse the structure if ( fds[0].revents & POLLIN ) fds[0].revents = 0; // input event on sock1 if ( fds[1].revents & POLLOUT ) fds[1].revents = 0; // output event on sock2 }
比较
1. 功能
select 和 poll 的功能基本相同,不过在一些实现细节上有所不同。
- select 会修改描述符,而 poll 不会;
- select 的描述符类型使用数组实现,FD_SETSIZE 大小默认为 1024,因此默认只能监听 1024 个描述符。如果要监听更多描述符的话,需要修改 FD_SETSIZE 之后重新编译;而 poll 的描述符类型使用链表实现,没有描述符数量的限制;
- poll 提供了更多的事件类型,并且对描述符的重复利用上比 select 高。
- 如果一个线程对某个描述符调用了 select 或者 poll,另一个线程关闭了该描述符,会导致调用结果不确定。
2. 速度
select 和 poll 速度都比较慢。
- select 和 poll 每次调用都需要将全部描述符从应用进程缓冲区复制到内核缓冲区。
- select 和 poll 的返回结果中没有声明哪些描述符已经准备好,所以如果返回值大于 0 时,应用进程都需要使用轮询的方式来找到 I/O 完成的描述符。
3. 可移植性
几乎所有的系统都支持 select,但是只有比较新的系统支持 poll。
epoll
int epoll_create(int size); int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
epoll_ctl() 用于向内核注册新的描述符或者是改变某个文件描述符的状态。已注册的描述符在内核中会被维护在一棵红黑树上,通过回调函数内核会将 I/O 准备好的描述符加入到一个链表中管理,进程调用 epoll_wait() 便可以得到事件完成的描述符。
从上面的描述可以看出,epoll 只需要将描述符从进程缓冲区向内核缓冲区拷贝一次,并且进程不需要通过轮询来获得事件完成的描述符。
epoll 仅适用于 Linux OS。
epoll 比 select 和 poll 更加灵活而且没有描述符数量限制。
epoll 对多线程编程更有友好,一个线程调用了 epoll_wait() 另一个线程关闭了同一个描述符也不会产生像 select 和 poll 的不确定情况。
// Create the epoll descriptor. Only one is needed per app, and is used to monitor all sockets. // The function argument is ignored (it was not before, but now it is), so put your favorite number here int pollingfd = epoll_create( 0xCAFE ); if ( pollingfd < 0 ) // report error // Initialize the epoll structure in case more members are added in future struct epoll_event ev = { 0 }; // Associate the connection class instance with the event. You can associate anything // you want, epoll does not use this information. We store a connection class pointer, pConnection1 ev.data.ptr = pConnection1; // Monitor for input, and do not automatically rearm the descriptor after the event ev.events = EPOLLIN | EPOLLONESHOT; // Add the descriptor into the monitoring list. We can do it even if another thread is // waiting in epoll_wait - the descriptor will be properly added if ( epoll_ctl( epollfd, EPOLL_CTL_ADD, pConnection1->getSocket(), &ev ) != 0 ) // report error // Wait for up to 20 events (assuming we have added maybe 200 sockets before that it may happen) struct epoll_event pevents[ 20 ]; // Wait for 10 seconds, and retrieve less than 20 epoll_event and store them into epoll_event array int ready = epoll_wait( pollingfd, pevents, 20, 10000 ); // Check if epoll actually succeed if ( ret == -1 ) // report error and abort else if ( ret == 0 ) // timeout; no event detected else { // Check if any events detected for ( int i = 0; i < ret; i++ ) { if ( pevents[i].events & EPOLLIN ) { // Get back our connection pointer Connection * c = (Connection*) pevents[i].data.ptr; c->handleReadEvent(); } } }
工作模式
epoll 的描述符事件有两种触发模式:LT(level trigger)和 ET(edge trigger)。
1. LT 模式
当 epoll_wait() 检测到描述符事件到达时,将此事件通知进程,进程可以不立即处理该事件,下次调用 epoll_wait() 会再次通知进程。是默认的一种模式,并且同时支持 Blocking 和 No-Blocking。
2. ET 模式
和 LT 模式不同的是,通知之后进程必须立即处理事件,下次再调用 epoll_wait() 时不会再得到事件到达的通知。
很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。只支持 No-Blocking,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
应用场景
很容易产生一种错觉认为只要用 epoll 就可以了,select 和 poll 都已经过时了,其实它们都有各自的使用场景。
1. select 应用场景
select 的 timeout 参数精度为 1ns,而 poll 和 epoll 为 1ms,因此 select 更加适用于实时性要求比较高的场景,比如核反应堆的控制。
select 可移植性更好,几乎被所有主流平台所支持。
2. poll 应用场景
poll 没有最大描述符数量的限制,如果平台支持并且对实时性要求不高,应该使用 poll 而不是 select。
3. epoll 应用场景
只需要运行在 Linux 平台上,有大量的描述符需要同时轮询,并且这些连接最好是长连接。
需要同时监控小于 1000 个描述符,就没有必要使用 epoll,因为这个应用场景下并不能体现 epoll 的优势。
需要监控的描述符状态变化多,而且都是非常短暂的,也没有必要使用 epoll。因为 epoll 中的所有描述符都存储在内核中,造成每次需要对描述符的状态改变都需要通过 epoll_ctl() 进行系统调用,频繁系统调用降低效率。并且 epoll 的描述符存储在内核,不容易调试。
资料来源 : github 作者 : CyC2018
您的转发+关注就是对笔者最大的支持,欢迎关注。
对大厂架构设计,BAT面试题分享,编程语言理论或者互联网圈逸闻趣事这些感兴趣,欢迎关注笔者,没有错,干货文章都在这里。
相关推荐
- go语言也可以做gui,go-fltk让你做出c++级别的桌面应用
-
大家都知道go语言生态并没有什么好的gui开发框架,“能用”的一个手就能数的清,好用的就更是少之又少。今天为大家推荐一个go的gui库go-fltk。它是通过cgo调用了c++的fltk库,性能非常高...
- 旧电脑的首选系统:TinyCore!体积小+精简+速度极快,你敢安装吗
-
这几天老毛桃整理了几个微型Linux发行版,准备分享给大家。要知道可供我们日常使用的Linux发行版有很多,但其中的一些发行版经常会被大家忽视。其实这些微型Linux发行版是一种非常强大的创新:在一台...
- codeblocks和VS2019下的fltk使用中文
-
在fltk中用中文有点问题。英文是这样。中文就成这个样子了。我查了查资料,说用UTF-8编码就行了。edit->Fileencoding->UTF-8然后保存文件。看下下边的编码指示确...
- FLTK(Fast Light Toolkit)一个轻量级的跨平台Python GUI库
-
FLTK(FastLightToolkit)是一个轻量级的跨平台GUI库,特别适用于开发需要快速、高效且简单界面的应用程序。本文将介绍Python中的FLTK库,包括其特性、应用场景以及如何通过代...
- 中科院开源 RISC-V 处理器“香山”流片,已成功运行 Linux
-
IT之家1月29日消息,去年6月份,中科院大学教授、中科院计算所研究员包云岗,发布了开源高性能RISC-V处理器核心——香山。近日,包云岗在社交平台晒出图片,香山芯片已流片,回片后...
- Linux 5.13内核有望合并对苹果M1处理器支持的初步代码
-
预计Linux5.13将初步支持苹果SiliconM1处理器,不过完整的支持工作可能还需要几年时间才能完全完成。虽然Linux已经可以在苹果SiliconM1上运行,但这需要通过一系列的补丁才能...
- Ubuntu系统下COM口测试教程(ubuntu port)
-
1、在待测试的板上下载minicom,下载minicom有两种方法:方法一:在Ubuntu软件中心里面搜索下载方法二:按“Ctrl+Alt+T”打开终端,打开终端后输入“sudosu”回车;在下...
- 湖北嵌入式软件工程师培训怎么选,让自己脱颖而出
-
很多年轻人毕业即失业、面试总是不如意、薪酬不满意、在家躺平。“就业难”该如何应对,参加培训是否能改变自己的职业走向,在湖北,有哪些嵌入式软件工程师培训怎么选值得推荐?粤嵌科技在嵌入式培训领域有十几年经...
- 新阁上位机开发---10年工程师的Modbus总结
-
前言我算了一下,今年是我跟Modbus相识的第10年,从最开始的简单应用到协议了解,从协议开发到协议讲解,这个陪伴了10年的协议,它一直没变,变的只是我对它的理解和认识。我一直认为Modbus协议的存...
- 创建你的第一个可运行的嵌入式Linux系统-5
-
@ZHangZMo在MicrochipBuildroot中配置QT5选择Graphic配置文件增加QT5的配置修改根文件系统支持QT5修改output/target/etc/profile配置文件...
- 如何在Linux下给zigbee CC2530实现上位机
-
0、前言网友提问如下:粉丝提问项目框架汇总下这个网友的问题,其实就是实现一个网关程序,内容分为几块:下位机,通过串口与上位机相连;下位机要能够接收上位机下发的命令,并解析这些命令;下位机能够根据这些命...
- Python实现串口助手 - 03串口功能实现
-
串口调试助手是最核心的当然是串口数据收发与显示的功能,pzh-py-com借助的是pySerial库实现串口收发功能,今天痞子衡为大家介绍pySerial是如何在pzh-py-com发挥功能的。一、...
- 为什么选择UART(串口)作为调试接口,而不是I2C、SPI等其他接口
-
UART(通用异步收发传输器)通常被选作调试接口有以下几个原因:简单性:协议简单:UART的协议非常简单,只需设置波特率、数据位、停止位和校验位就可以进行通信。相比之下,I2C和SPI需要处理更多的通...
- 同一个类,不同代码,Qt 串口类QSerialPort 与各种外设通讯处理
-
串口通讯在各种外设通讯中是常见接口,因为各种嵌入式CPU中串口标配,工业控制中如果不够还通过各种串口芯片进行扩展。比如spi接口的W25Q128FV.对于软件而言,因为驱动接口固定,软件也相对好写,因...
- 嵌入式linux为什么可以通过PC上的串口去执行命令?
-
1、uboot(负责初始化基本硬bai件,如串口,网卡,usb口等,然du后引导系统zhi运行)2、linux系统(真正的操作系统)3、你的应用程序(基于操作系统的软件应用)当你开发板上电时,u...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- go语言也可以做gui,go-fltk让你做出c++级别的桌面应用
- 旧电脑的首选系统:TinyCore!体积小+精简+速度极快,你敢安装吗
- codeblocks和VS2019下的fltk使用中文
- FLTK(Fast Light Toolkit)一个轻量级的跨平台Python GUI库
- 中科院开源 RISC-V 处理器“香山”流片,已成功运行 Linux
- Linux 5.13内核有望合并对苹果M1处理器支持的初步代码
- Ubuntu系统下COM口测试教程(ubuntu port)
- 湖北嵌入式软件工程师培训怎么选,让自己脱颖而出
- 新阁上位机开发---10年工程师的Modbus总结
- 创建你的第一个可运行的嵌入式Linux系统-5
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)