Python编程 - 基于OpenCV实现人脸识别(实践篇)爬虫+人脸识别
liebian365 2024-10-27 13:18 22 浏览 0 评论
一.案例概述
本案例需要一定的Python编程基础并掌握OpenCV基本使用。
时间仓促:初略编写文档
效果如下:
开发环境:
操作系统:Windows 10
开发工具:PyCharm 2019.2版本
python版本:3.6.7
计算机视频库包:opencv_contrib_python-4.1.0.25-cp36-cp36m-win_amd64.whl
算法支持包:numpy(安装opencv默认安装numpy)
下载地址:
Python3.6.7:
Download Python?www.python.org
Pycharm工具:
Download PyCharm: Python IDE for Professional Developers by JetBrains?www.jetbrains.com
第三方包下载:
opencv-contrib-python?pypi.org
二.编写案例准备资源:
准备工作:
1.开发环境、开发工具及第三方包准备完善并创建空项目。
2.准备一些个人的图片(或者通过代码保存个人面部存入本地)要求:图片名称有一定规律
3.爬虫文件 - 爬取明星照片并存储本地
4.将明星图片和个人图片通过opencv处理保存面部图片
5.开始编写人脸识别的代码
三.代码编写顺序
一.爬虫代码直接下载运行:点击下载链接: https://pan.baidu.com/s/1BNzSQ2Xk9GkYslhwKXLYSQ 提取码: qmy1二.安装python爬虫需要的第三方包:
- requests(用户网络访问)
- beautifulsoup4(用户数据结构解析)
- pypinyin(用于中文转换为拼音)
三.运行python爬虫代码:
四.将图片转换为面部图片进行存储:
# 获取小头像信息
import cv2
import os
# 图片张数变量
def read_image():
dirs = os.listdir("d_img")
for j,dir in enumerate(dirs):
print(dir)
# 判断是否有存储头像的路径
file_path = "x_face/%s"%str(dir);
if not os.path.exists(file_path):
os.makedirs(file_path);
pass
num = 0;
for i in range(0,20):
image = cv2.imread('d_img/%s/%d.jpg'%(dir,i))
gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
# 数据参数
face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml");
# [3]进行数据对比:minNeighbors = 每一个目标至少要被检测 -整数
face_01 = face_detector.detectMultiScale(gray, minNeighbors=4);
# 绘制矩形人脸检测
print("第%d张图片===:"%i,face_01)
print(type(face_01))
if isinstance(face_01,tuple):
print("没有检查的头像")
pass
else:
print("****有检查的头像****")
for x, y, w, h in face_01:
# time.sleep(10)
x_face = gray[y:y + h, x:x + w];
x_face = cv2.resize(x_face,dsize=(200,200));
bo_photo = cv2.imwrite("%s\%d.jpg" % (file_path, num), x_face);
print("保存成功:%d" % num)
pass
num+=1;
pass
pass
pass
if __name__ == '__main__':
read_image();
pass
运行结果 - 生产以下文件:
五.人脸识别 - 主代码:
# 人脸识别 - 主代码
import cv2
import os
import time
import numpy as np;
# 图片张数变量
def Get_x_faces():
dirs = os.listdir("x_face")
print(dirs)
X = []#
Y = []#
for j,dir in enumerate(dirs):
for i in range(0,9):
image = cv2.imread('x_face/%s/%d.jpg'%(dir,i))
gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
print("读取",gray.shape)
# NoneType ndarray
if len(str(image))!=0:
print("加入。。。。")
X.append(gray)
Y.append(j)
pass
return [X,Y,dirs]
pass
if __name__ == '__main__':
X,Y,dirs = Get_x_faces();
print("X=",X)
print("Y=",Y)
print("dirs=",dirs)
#asarray都可以将结构数据转化为ndarray
X = np.asarray(X);
Y = np.asarray(Y);
# 产生一个随机数 -
index = [i for i in range(0,len(X))];
print(index)
#现场修改序列,改变自身内容。(类似洗牌,打乱顺序)
np.random.shuffle(index);
print("***********",index)
# 打乱顺序 :相同规则打乱
X = X[index]
Y = Y[index]
print("88888888",Y)
# 训练数据
print("训练数据为:",len(X),len(Y))
X_train = X[:len(X)]
Y_train = Y[:len(Y)];
print("800000",Y_train)
# 算法Eigen 特征的意思
# 主成分分析(PCA)——Eigenfaces(特征脸)——函数:cv2.face.EigenFaceRecognizer_create
model = cv2.face.EigenFaceRecognizer_create();
print(model)
# 算法学习
print("算法学习", len(X_train), len(Y_train));
model.train(X, Y);
print("已经学会了数据。。。。")
# 测试数据
# X_test, Y_test = X[-5:], Y[-5:];
# 开始验证
# for data in X_test:
# # print(data)
# result = model.predict(data);
# print("=================")
# print(result)
# print(dirs[result[0]])
# pass
Video_face = cv2.VideoCapture(0);
face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
# while循环调取视频图形
while True:
flag,frame = Video_face.read();
gray = cv2.cvtColor(frame,code=cv2.COLOR_BGR2GRAY);
faces = face_detector.detectMultiScale(gray,1.3,5);
if isinstance(faces, tuple):
print("没有检查的头像")
pass
else:
print("有头像了。。。。")
# for循环遍历数据
for x, y, w, h in faces:
cv2.rectangle(frame, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2);
face = gray[y:y + h, x:x+w];
print("===]]]", face.shape)
face_1 = cv2.resize(face, dsize=(200, 200));
print("=================")
print(face_1.shape)
# 开始对比
print("~~~~"*20)
print(" 参数为:",face_1.shape);
result = model.predict(face_1);
print("对比返回结果:", result)
print('该人脸是:', dirs[result[0]])
a1 = dirs[result[0]]
if result[1]<1600:
a1 = "NO"
pass
cv2.putText(frame, a1, (x, y), cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
pass
pass
cv2.imshow('face', frame)
cv2.waitKey(100)
pass
video.release()
cv2.destroyAllWindows();
pass
大功告成
相关推荐
- 4万多吨豪华游轮遇险 竟是因为这个原因……
-
(观察者网讯)4.7万吨豪华游轮搁浅,竟是因为油量太低?据观察者网此前报道,挪威游轮“维京天空”号上周六(23日)在挪威近海发生引擎故障搁浅。船上载有1300多人,其中28人受伤住院。经过数天的调...
- “菜鸟黑客”必用兵器之“渗透测试篇二”
-
"菜鸟黑客"必用兵器之"渗透测试篇二"上篇文章主要针对伙伴们对"渗透测试"应该如何学习?"渗透测试"的基本流程?本篇文章继续上次的分享,接着介绍一下黑客们常用的渗透测试工具有哪些?以及用实验环境让大家...
- 科幻春晚丨《震动羽翼说“Hello”》两万年星间飞行,探测器对地球的最终告白
-
作者|藤井太洋译者|祝力新【编者按】2021年科幻春晚的最后一篇小说,来自大家喜爱的日本科幻作家藤井太洋。小说将视角放在一颗太空探测器上,延续了他一贯的浪漫风格。...
- 麦子陪你做作业(二):KEGG通路数据库的正确打开姿势
-
作者:麦子KEGG是通路数据库中最庞大的,涵盖基因组网络信息,主要注释基因的功能和调控关系。当我们选到了合适的候选分子,单变量研究也已做完,接着研究机制的时便可使用到它。你需要了解你的分子目前已有哪些...
- 知存科技王绍迪:突破存储墙瓶颈,详解存算一体架构优势
-
智东西(公众号:zhidxcom)编辑|韦世玮智东西6月5日消息,近日,在落幕不久的GTIC2021嵌入式AI创新峰会上,知存科技CEO王绍迪博士以《存算一体AI芯片:AIoT设备的算力新选择》...
- 每日新闻播报(September 14)_每日新闻播报英文
-
AnOscarstatuestandscoveredwithplasticduringpreparationsleadinguptothe87thAcademyAward...
- 香港新巴城巴开放实时到站数据 供科技界研发使用
-
中新网3月22日电据香港《明报》报道,香港特区政府致力推动智慧城市,鼓励公私营机构开放数据,以便科技界研发使用。香港运输署21日与新巴及城巴(两巴)公司签署谅解备忘录,两巴将于2019年第3季度,开...
- 5款不容错过的APP: Red Bull Alert,Flipagram,WifiMapper
-
本周有不少非常出色的app推出,鸵鸟电台做了一个小合集。亮相本周榜单的有WifiMapper's安卓版的app,其中包含了RedBull的一款新型闹钟,还有一款可爱的怪物主题益智游戏。一起来看看我...
- Qt动画效果展示_qt显示图片
-
今天在这篇博文中,主要实践Qt动画,做一个实例来讲解Qt动画使用,其界面如下图所示(由于没有录制为gif动画图片,所以请各位下载查看效果):该程序使用应用程序单窗口,主窗口继承于QMainWindow...
- 如何从0到1设计实现一门自己的脚本语言
-
作者:dong...
- 三年级语文上册 仿写句子 需要的直接下载打印吧
-
描写秋天的好句好段1.秋天来了,山野变成了美丽的图画。苹果露出红红的脸庞,梨树挂起金黄的灯笼,高粱举起了燃烧的火把。大雁在天空一会儿写“人”字,一会儿写“一”字。2.花园里,菊花争奇斗艳,红的似火,粉...
- C++|那些一看就很简洁、优雅、经典的小代码段
-
目录0等概率随机洗牌:1大小写转换2字符串复制...
- 二年级上册语文必考句子仿写,家长打印,孩子照着练
-
二年级上册语文必考句子仿写,家长打印,孩子照着练。具体如下:...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)