百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分析 > 正文

Python 速度慢,试试这个方法提高 1000 倍

liebian365 2024-10-30 04:47 3 浏览 0 评论

作者 | Andrew Zhu
译者 | 苏本如
出品 | CSDN(ID:CSDNnews)

龟兔比赛(我6岁儿子 Charles Zhu 的绘画作品)


人们一直诟病 Python 程序的速度很慢,它到底有多慢呢?


在每次的编程语言速度竞赛中,Python 的名次通常都比较垫底。有人解释这是因为 Python 是一种解释型语言(代码无需编译即可执行),而所有的解释型编程语言执行速度都很慢。然而,我们知道 Java 也是一种解释型语言,它的字节码是由 JVM 解释的。而在这个基准测试速度比较页面上的结果却显示:Java 要比 Python 的速度快得多。

下面是一个可以用来演示 Python 速度慢的示例。它使用传统的 for 循环来产生一个数的倒数:

import numpy as npnp.random.seed(0)values = np.random.randint(1, 100, size=1000000)def get_reciprocal(values):output = np.empty(len(values))for i in range(len(values)):output[i] = 1.0/values[i]%timeit get_reciprocal(values)

结果显示:

每个循环平均耗时3.37秒(标准偏差±582毫秒)(共计运行了7次程序,每次一个循环)

计算 1,000,000 个倒数竟然需要 3.37 秒。使用 C 语言执行同样的运算只需要不到一眨眼的工夫:9 毫秒;C# 需要 19 毫秒;Nodejs 需要 26 毫秒;Java 仅仅需要 5 毫秒!而 Python 竟然用了让人怀疑人生的 3.37秒(它到底做了些什么)!(注:在本文的最后,我附上了所有语言的测试代码)。


Python 速度缓慢的根本原因


我们通常把 Python 称为一种动态类型编程语言。而 Python 程序中的一切变量都是以对象的形式存在,换句话说,每次 Python 代码处理数据时,都需要进行对象拆箱操作,以确定对象的具体类型。在 for 循环内部,每次循环都需要拆箱对象,检查类型并计算倒数。那3秒钟的时间都在类型检查中浪费了。

C 语言和其他传统的编程语言则不同,它们对数据的访问是直接的。但在 Python 中,大量的 CPU 时间都用在了类型检查上。

即使是一个简单的赋值操作也会花费很长的时间。如:

a = 1

这个简单的赋值操作,它需要如下两个步骤:

  • 步骤 1:将 a->PyObject_HEAD->typecode 设置为 Integer 类型.

  • 步骤 2. 将值 1 赋值 a (a->val =1).

关于 Python 为什么速度慢的更多信息,Jake 写的这篇精彩文章值得一读:Why Python is Slow: Looking Under the Hood

那么,有没有一种方法可以绕过类型检查,从而提高 Python 程序的性能呢?


答案是:使用 NumPy 通用函数


与 Python 列表(list)不同,NumPy 数组是围绕 C 数组构建的对象。NumPy 数组访问项不需要任何步骤来检查类型。这给我们找到解决方案指明了方向:使用 NumPy 通用函数(亦即UFunc)。

简而言之,UFunc 是一种可以直接对整个数组进行算术运算的方法。下面我们将前面那个慢速的 Python 示例改写为 UFunc 版本,它就像下面这样:

import numpy as npnp.random.seed(0)values = np.random.randint(1, 100, size=1000000)%timeit result = 1.0/values

改写后的代码不仅提高了速度,而且代码变得更短。猜猜现在这个程序执行要花多少时间?它比我上面提到的最快的语言快了2.7毫秒

每个循环平均耗时2.71毫秒(标准偏差±50.8微秒)(共运行了7次程序,每次循环100个)

返回代码,关键是 1.0/values 这一行。这里的 values 不是一个数字,而是一个 NumPy 数组。和除法运算符一样,Numpy 还有许多其他运算符(如下图示)。

点击这里可以找到所有 Ufunc 运算(操作)符。


总结


对于那些使用 Python 的人来说,使用 Python 处理数据和数字的可能性很大。这些数据可以存储在 NumPy 或 Pandas DataFrame中,因为DataFrame 是基于 NumPy 实现的。所以 Ufunc 也可以使用。

UFunc 使我们能够以超越几个数量级的更快速度在 Python 中执行重复操作。最慢的 Python 甚至可以跑得 C 语言更快。这一点太让人激动了。


附录— C,C#,Java 和 NodeJS 的测试代码


C 语言:

#include <stdio.h>#include <stdlib.h>#include <sys/time.h>
int main(){ struct timeval stop, start; int length = 1000000; int rand_array[length]; float output_array[length]; for(int i = 0; i<length; i++){ rand_array[i] = rand(); } gettimeofday(&start, ); for(int i = 0; i<length; i++){ output_array[i] = 1.0/(rand_array[i]*1.0); } gettimeofday(&stop, ); printf("took %lu us\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec - start.tv_usec); printf("done\n"); return 0;}

C#(.net 5.0):

using System;namespace speed_test{ class Program{ static void Main(string[] args){ int length = 1000000; double[] rand_array =new double[length]; double[] output = new double[length]; var rand = new Random(); for(int i =0; i<length;i++){ rand_array[i] = rand.Next(); //Console.WriteLine(rand_array[i]); } long start = DateTimeOffset.Now.ToUnixTimeMilliseconds(); for(int i =0;i<length;i++){ output[i] = 1.0/rand_array[i]; } long end = DateTimeOffset.Now.ToUnixTimeMilliseconds(); Console.WriteLine(end - start); } }}

Java:

import java.util.Random;
public class speed_test { public static void main(String[] args){ int length = 1000000; long[] rand_array = new long[length]; double[] output = new double[length]; Random rand = new Random (); for(int i =0; i<length; i++){ rand_array[i] = rand.nextLong(); } long start = System.currentTimeMillis(); for(int i = 0;i<length; i++){ output[i] = 1.0/rand_array[i]; } long end = System.currentTimeMillis(); System.out.println(end - start); }}

NodeJS:

let length = 1000000;let rand_array = [];let output = [];for(var i=0;i<length;i++){ rand_array[i] = Math.floor(Math.random()*10000000);}let start = (new Date()).getMilliseconds();for(var i=0;i<length;i++){ output[i] = 1.0/rand_array[i];}let end = (new Date()).getMilliseconds();console.log(end - start);

原文链接:https://python.plainenglish.io/a-solution-to-boost-python-speed-1000x-times-c9e7d5be2f40

声明:本文由CSDN翻译,转载请注明来源.

4月20日晚八点,欢迎来到CSDN悦读时间直播间,与四位大咖一起探索UNIX传奇往事的启示,围观《UNIX传奇》新书发布会!


相关推荐

快递查询教程,批量查询物流,一键管理快递

作为商家,每天需要查询许许多多的快递单号,面对不同的快递公司,有没有简单一点的物流查询方法呢?小编的回答当然是有的,下面随小编一起来试试这个新技巧。需要哪些工具?安装一个快递批量查询高手快递单号怎么快...

一键自动查询所有快递的物流信息 支持圆通、韵达等多家快递

对于各位商家来说拥有一个好的快递软件,能够有效的提高自己的工作效率,在管理快递单号的时候都需要对单号进行表格整理,那怎么样能够快速的查询所有单号信息,并自动生成表格呢?1、其实方法很简单,我们不需要一...

快递查询单号查询,怎么查物流到哪了

输入单号怎么查快递到哪里去了呢?今天小编给大家分享一个新的技巧,它支持多家快递,一次能查询多个单号物流,还可对查询到的物流进行分析、筛选以及导出,下面一起来试试。需要哪些工具?安装一个快递批量查询高手...

3分钟查询物流,教你一键批量查询全部物流信息

很多朋友在问,如何在短时间内把单号的物流信息查询出来,查询完成后筛选已签收件、筛选未签收件,今天小编就分享一款物流查询神器,感兴趣的朋友接着往下看。第一步,运行【快递批量查询高手】在主界面中点击【添...

快递单号查询,一次性查询全部物流信息

现在各种快递的查询方式,各有各的好,各有各的劣,总的来说,还是有比较方便的。今天小编就给大家分享一个新的技巧,支持多家快递,一次能查询多个单号的物流,还能对查询到的物流进行分析、筛选以及导出,下面一起...

快递查询工具,批量查询多个快递快递单号的物流状态、签收时间

最近有朋友在问,怎么快速查询单号的物流信息呢?除了官网,还有没有更简单的方法呢?小编的回答当然是有的,下面一起来看看。需要哪些工具?安装一个快递批量查询高手多个京东的快递单号怎么快速查询?进入快递批量...

快递查询软件,自动识别查询快递单号查询方法

当你拥有多个快递单号的时候,该如何快速查询物流信息?比如单号没有快递公司时,又该如何自动识别再去查询呢?不知道如何操作的宝贝们,下面随小编一起来试试。需要哪些工具?安装一个快递批量查询高手快递单号若干...

教你怎样查询快递查询单号并保存物流信息

商家发货,快递揽收后,一般会直接手动复制到官网上一个个查询物流,那么久而久之,就会觉得查询变得特别繁琐,今天小编给大家分享一个新的技巧,下面一起来试试。教程之前,我们来预览一下用快递批量查询高手...

简单几步骤查询所有快递物流信息

在高峰期订单量大的时候,可能需要一双手当十双手去查询快递物流,但是由于逐一去查询,效率极低,追踪困难。那么今天小编给大家分享一个新的技巧,一次能查询多个快递单号的物流,下面一起来学习一下,希望能给大家...

物流单号查询,如何查询快递信息,按最后更新时间搜索需要的单号

最近有很多朋友在问,如何通过快递单号查询物流信息,并按最后更新时间搜索出需要的单号呢?下面随小编一起来试试吧。需要哪些工具?安装一个快递批量查询高手快递单号若干怎么快速查询?运行【快递批量查询高手】...

连续保存新单号功能解析,导入单号查询并自动识别批量查快递信息

快递查询已经成为我们日常生活中不可或缺的一部分。然而,面对海量的快递单号,如何高效、准确地查询每一个快递的物流信息,成为了许多人头疼的问题。幸运的是,随着科技的进步,一款名为“快递批量查询高手”的软件...

快递查询教程,快递单号查询,筛选更新量为1的单号

最近有很多朋友在问,怎么快速查询快递单号的物流,并筛选出更新量为1的单号呢?今天小编给大家分享一个新方法,一起来试试吧。需要哪些工具?安装一个快递批量查询高手多个快递单号怎么快速查询?运行【快递批量查...

掌握批量查询快递动态的技巧,一键查找无信息记录的两种方法解析

在快节奏的商业环境中,高效的物流查询是确保业务顺畅运行的关键。作为快递查询达人,我深知时间的宝贵,因此,今天我将向大家介绍一款强大的工具——快递批量查询高手软件。这款软件能够帮助你批量查询快递动态,一...

从复杂到简单的单号查询,一键清除单号中的符号并批量查快递信息

在繁忙的商务与日常生活中,快递查询已成为不可或缺的一环。然而,面对海量的单号,逐一查询不仅耗时费力,还容易出错。现在,有了快递批量查询高手软件,一切变得简单明了。只需一键,即可搞定单号查询,一键处理单...

物流单号查询,在哪里查询快递

如果在快递单号多的情况,你还在一个个复制粘贴到官网上手动查询,是一件非常麻烦的事情。于是乎今天小编给大家分享一个新的技巧,下面一起来试试。需要哪些工具?安装一个快递批量查询高手快递单号怎么快速查询?...

取消回复欢迎 发表评论: