百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术分析 > 正文

CUDA加速——基于规约思想的数组元素求和

liebian365 2024-11-02 13:33 37 浏览 0 评论

数组元素求和,顾名思义就是求数组中所有元素的和,比如有数组X:


X的所有元素和就是:

如果按串行顺序求上式还是很好理解的,就是一个逐渐累加的过程,如下图,按照step1~stepn的步骤,依次计算S0,S1,S2,...,Sn-1,最后得到的Sn-1即是所有元素的和:






01

规约求和思想


以上串行顺序计算的step1~stepn是按照先后顺序依次执行的,那么如果是并行顺序求和呢?也即将多个求和步骤并行执行,而不是按照先后顺序执行,这时该怎么办?



由于step1~stepn中后步骤的计算结果依赖于前步骤的结果,必须等待前步骤计算结果出来之后才能开始后步骤的计算,如果直接对step1~stepn这n个步骤并行执行,显然是不能得到正确结果的,因为前步骤的结果还没出来后步骤就开始计算了。

为解上述问题,通常采用规约思想来并行计算。下面我们举一个简单的例子来说明规约思想,假设数组X有8个元素,现要使用规约思想求其元素和:



步骤如下:


  • 将x0~x7两两分组:(x0,x1)、(x2,x3)、(x4,x5)、(x6,x7)。然后使用4个线程并行计算每组的元素和,得到4个求和结果:

  • 再将上一步骤得到的4个求和结果两两分组:(S0,S1)、(S2,S3)。然后使用2个线程并行计算每组的元素和,得到2个求和结果:

  • 使用1个线程计算上一步骤得到的S4,S5之和,也即最终求和结果:



以上3个步骤可用下图表示,每个步骤都将数据两两分组,然后并行计算每组的元素和,最后得到一个结果,这就是规约的过程:







02

CUDA实现数组元素的规约求和


CUDA是为并行计算而生的,使用CUDA可以很容易实现上述的数组规约求和算法。不过有一点需要注意,就是必须确保每个步骤的所有线程是同步的,也即所有线程计算完成之后再进入下一步骤的计算,否则会导致结果错误

比如假设上图的线程a、b、c已完成计算,但是线程d未完成计算,如果不等线程d完成计算就直接进入下一步骤计算S4和S5,由于线程d未完成计算,得到的S3是错误的值,这导致得到的S5也是错误的值,从而导致最终计算的S6也错了——这将导致错误的连锁反应。

在CUDA中,可以调用__syncthreads函数方便地同步同一个线程块中的所有线程,因此我们可以使用同一个线程块中的多个线程做规约运算。那么问题来了,如果数据量很大,一个线程块不能完成所有数据的规约运算该怎么办呢?答案是分块处理,将数据平均分成多个部分,每部分都分配给一个线程块做规约运算。因此每个线程块最后得到一个规约结果,最后再将多个规约结果求和,即得到最后结果。如下图所示:



也许这里有人会问,最后得到的多个规约结果还是得按照串行顺序求和呀,这样做有点脱裤子放屁了。我想说是这样,只不过最后得规约结果相对原始数据个数,已经少了很多很多了,因此其串行求和的耗时基本可以忽略。


CUDA核函数代码如下:

#define N (1536 * 20480)   //数据总长度


//Para为输入数组,长度为N
//blocksum_cuda存储所有线程块的规约结果
__global__ void cal_sum_ker0(float *Para, float *blocksum_cuda)
{
  //计算线程ID号
  //blockIdx.x为线程块的ID号
  //blockDim.x每个线程块中包含的线程总个数
  //threadIdx.x为每个线程块中的线程ID号
  int tid = blockIdx.x * blockDim.x + threadIdx.x;


  if(tid < N)
  {
    for (int index = 1; index < blockDim.x; index = (index*2))
    {
      if (threadIdx.x % (index*2) == 0) 
      { 
        Para[tid] += Para[tid + index];  //规约求和
      } 


      __syncthreads();  //同步线程块中的所有线程
    } 


    if(threadIdx.x == 0)   //整个数组相加完成后,将共享内存数组0号元素的值赋给全局内存数组0号元素,最后返回CPU端 
      blocksum_cuda[blockIdx.x] = Para[tid]; 
  }
}


上面代码的for循环,咋一看很难理解,没有关系,我们举个简单例子来说明就好了。假设:blockDim.x=8,也即每个线程块有8个线程;N=8,也即输入数组的长度为8。那么对于第0个线程块(其它线程块也类似),其包含线程id为0~7,计算过程如下,你是否已经发现,其计算过程就是上述讲的规约过程呀~



下面我们写代码来测试上方实现的规约算法是否正确:


首先,定义一个微秒级计时的类,用于计时:



class Timer_Us2
{
private:
  LARGE_INTEGER cpuFreq;
  LARGE_INTEGER startTime;
  LARGE_INTEGER endTime;
public:
  double rumTime;
  void get_frequence(void)
  {
    QueryPerformanceFrequency(&cpuFreq);   //获取时钟频率
  }


  void start_timer(void)
  {
    QueryPerformanceCounter(&startTime);    //开始计时
  }


  void stop_timer(char *str)
  {
    QueryPerformanceCounter(&endTime);    //结束计时
    rumTime = (((endTime.QuadPart - startTime.QuadPart) * 1000.0f) / cpuFreq.QuadPart);
    cout << str << rumTime << " ms" << endl;
  }


  Timer_Us2()    //构造函数
  {
    QueryPerformanceFrequency(&cpuFreq);
  }
};


接着是测试函数:


void Cal_Sum_Test() 
{ 
  Timer_Us2 timer;
  //申请长度为N的float型动态内存
  float *test_d = (float *)malloc(N * sizeof(float));
  for (long long i = 0; i < N; i++)
  { 
    test_d[i] = 0.5;  //将所有元素赋值为0.5
  } 


  double ParaSum = 0.0; 


  timer.start_timer();
  //在CPU端按顺序计算数组元素和
  for (long long i = 0; i < N; i++)
  { 
    ParaSum += test_d[i];  //CPU端数组累加 
  } 
  timer.stop_timer("CPU time:");
  cout << " CPU result = " << ParaSum << endl;  //显示CPU端结果 


  //设置每个线程块有1024个线程
  dim3 sumblock(1024);  
  //设置总共有多少个线程块
  dim3 sumgrid(((N%sumblock.x) ? (N/sumblock.x + 1) : (N/sumblock.x)));


  float *test_d_cuda;
  float *blocksum_cuda;
  float *blocksum_host = (float *)malloc(sizeof(float) * sumgrid.x);
  //申请GPU端全局内存
  cudaMalloc((void **)&test_d_cuda, sizeof(float) * N);
  cudaMalloc((void **)&blocksum_cuda, sizeof(float) * sumgrid.x);


  timer.start_timer();
  //将数据从CPU端拷贝到GPU端
  cudaMemcpy(test_d_cuda, test_d, sizeof(float) * N, cudaMemcpyHostToDevice);
  //调用核函数进行规约求和
  cal_sum_ker0 << < sumgrid, sumblock >> > (test_d_cuda, blocksum_cuda); 
  //将每个线程块的规约求和结果拷贝到CPU端
  cudaMemcpy(blocksum_host, blocksum_cuda, sizeof(float) * sumgrid.x, cudaMemcpyDeviceToHost);
  //在CPU端对所有线程块的规约求和结果做串行求和
  double sum = 0.0;
  for(int i = 0; i < sumgrid.x; i++)
  {
    sum += blocksum_host[i];
  }


  timer.stop_timer("GPU time:");


  cout << " GPU result = " << sum << endl;   //显示GPU端结果


  //释放内存
  cudaFree(test_d_cuda);
  cudaFree(blocksum_cuda);
  free(blocksum_host);
  free(test_d);


运行结果如下,可以看到对1536*20480长度的数组求元素和,CPU和GPU的计算结果是一致的,不过GPU CUDA计算耗时反而比CPU更多了,一方面是因为GPU计算多了host与device端内存拷贝的耗时,另一方面是因为我们实现的CUDA规约算法没有做到优化的极致,还有不小的优化空间。那么接下来让我们继续尝试优化吧~


相关推荐

4万多吨豪华游轮遇险 竟是因为这个原因……

(观察者网讯)4.7万吨豪华游轮搁浅,竟是因为油量太低?据观察者网此前报道,挪威游轮“维京天空”号上周六(23日)在挪威近海发生引擎故障搁浅。船上载有1300多人,其中28人受伤住院。经过数天的调...

“菜鸟黑客”必用兵器之“渗透测试篇二”

"菜鸟黑客"必用兵器之"渗透测试篇二"上篇文章主要针对伙伴们对"渗透测试"应该如何学习?"渗透测试"的基本流程?本篇文章继续上次的分享,接着介绍一下黑客们常用的渗透测试工具有哪些?以及用实验环境让大家...

科幻春晚丨《震动羽翼说“Hello”》两万年星间飞行,探测器对地球的最终告白

作者|藤井太洋译者|祝力新【编者按】2021年科幻春晚的最后一篇小说,来自大家喜爱的日本科幻作家藤井太洋。小说将视角放在一颗太空探测器上,延续了他一贯的浪漫风格。...

麦子陪你做作业(二):KEGG通路数据库的正确打开姿势

作者:麦子KEGG是通路数据库中最庞大的,涵盖基因组网络信息,主要注释基因的功能和调控关系。当我们选到了合适的候选分子,单变量研究也已做完,接着研究机制的时便可使用到它。你需要了解你的分子目前已有哪些...

知存科技王绍迪:突破存储墙瓶颈,详解存算一体架构优势

智东西(公众号:zhidxcom)编辑|韦世玮智东西6月5日消息,近日,在落幕不久的GTIC2021嵌入式AI创新峰会上,知存科技CEO王绍迪博士以《存算一体AI芯片:AIoT设备的算力新选择》...

每日新闻播报(September 14)_每日新闻播报英文

AnOscarstatuestandscoveredwithplasticduringpreparationsleadinguptothe87thAcademyAward...

香港新巴城巴开放实时到站数据 供科技界研发使用

中新网3月22日电据香港《明报》报道,香港特区政府致力推动智慧城市,鼓励公私营机构开放数据,以便科技界研发使用。香港运输署21日与新巴及城巴(两巴)公司签署谅解备忘录,两巴将于2019年第3季度,开...

5款不容错过的APP: Red Bull Alert,Flipagram,WifiMapper

本周有不少非常出色的app推出,鸵鸟电台做了一个小合集。亮相本周榜单的有WifiMapper's安卓版的app,其中包含了RedBull的一款新型闹钟,还有一款可爱的怪物主题益智游戏。一起来看看我...

Qt动画效果展示_qt显示图片

今天在这篇博文中,主要实践Qt动画,做一个实例来讲解Qt动画使用,其界面如下图所示(由于没有录制为gif动画图片,所以请各位下载查看效果):该程序使用应用程序单窗口,主窗口继承于QMainWindow...

如何从0到1设计实现一门自己的脚本语言

作者:dong...

三年级语文上册 仿写句子 需要的直接下载打印吧

描写秋天的好句好段1.秋天来了,山野变成了美丽的图画。苹果露出红红的脸庞,梨树挂起金黄的灯笼,高粱举起了燃烧的火把。大雁在天空一会儿写“人”字,一会儿写“一”字。2.花园里,菊花争奇斗艳,红的似火,粉...

C++|那些一看就很简洁、优雅、经典的小代码段

目录0等概率随机洗牌:1大小写转换2字符串复制...

二年级上册语文必考句子仿写,家长打印,孩子照着练

二年级上册语文必考句子仿写,家长打印,孩子照着练。具体如下:...

一年级语文上 句子专项练习(可打印)

...

亲自上阵!C++ 大佬深度“剧透”:C++26 将如何在代码生成上对抗 Rust?

...

取消回复欢迎 发表评论: