30s到0.8s,记录一次接口优化成功案例!
liebian365 2024-11-05 11:45 19 浏览 0 评论
场景
在高并发的数据处理场景中,接口响应时间的优化显得尤为重要。本文将分享一个真实案例,其中一个数据量达到200万+的接口的响应时间从30秒降低到了0.8秒内。
这个案例不仅展示了问题诊断的过程,也提供了一系列有效的优化措施。
交易系统中,系统需要针对每一笔交易进行拦截(每一笔支付或转账就是一笔交易),拦截时需要根据定义好的规则拦截,这次需要优化的接口是一个统计规则拦截率的接口。
问题诊断
最初,接口的延迟非常高,大约需要30秒才能完成。为了定位问题,我们首先排除了网络和服务器设备因素,并打印了关键代码的执行时间。经过分析,发现问题出在SQL执行上。
发现Sql执行时间太久,查询200万条数据的执行时间竟然达到了30s,下面是是最耗时的部分相关代码逻辑:
查询代码(其实就是使用Mybatis查询,看起来正常的很)
List<Map<String, Object>> list = transhandleFlowMapper.selectDataTransHandleFlowAdd(selectSql);
统计当天的Id号(programhandleidlist字段)
SELECT programhandleidlist FROM anti_transhandle WHERE create_time BETWEEN '2024-01-08 00:00:00.0' AND '2024-01-09 00:00:00.0';
表结构(Postgresql)
我以为是Sql写的有问题,先拿着sql执行了一边,发现只执行sql的执行时间是大约800毫秒,和30秒差距巨大。
Sql层面分析
使用EXPLAIN ANALYZE函数分析sql。
EXPLAIN ANALYZE
SELECT programhandleidlist FROM anti_transhandle WHERE create_time BETWEEN '2024-01-08 00:00:00.0' AND '2024-01-09 00:00:00.0';
分析结果
看来是代码的部分有问题。
代码层面分析
List<Map<String, Object>> list = transhandleFlowMapper.selectDataTransHandleFlowAdd(selectSql);
Map的Key是programhandleIdList,Map的value是每一行的值。
在Java层面,每条数据都创建了一个Map对象,对于200万+的数据量来说,这显然是非常耗时的操作,速度是被创建了大量的Map集合给拖垮的。。
为了解决这个问题,我们尝试了将200万行数据转换为单行返回,使用PostgreSQL的array_agg和unnest函数来优化查询。
第一次遇到Mybatis查询返回导致接口速度慢的问题。
优化措施
1. SQL优化
我的思路是将200万行转为一行返回。
要将 PostgreSQL 中查询出的 programhandleidlist 字段(假设这是一个数组类型)的所有元素拼接为一行,您可以使用数组聚合函数 array_agg 结合 unnest 函数。
这样做可以先将数组展开为多行,然后将这些行再次聚合为一个单一的数组。如果您希望最终结果是一个字符串,而不是数组,您还可以使用 string_agg 函数。
以下是相应的 SQL 语句:
SELECT array_agg(elem) AS concatenated_array
FROM (
SELECT unnest(programhandleidlist) AS elem
FROM anti_transhandle
WHERE create_time BETWEEN '2024-01-08 00:00:00.0' AND '2024-01-09 00:00:00.0'
) sub;
在这个查询中:
- unnest(programhandleidlist) 将 programhandleidlist 数组展开成多行。
- string_agg(elem) 将这些行聚合成一个以逗号分隔的字符串。
这将返回一个包含所有元素的单一数组。
查询结果由多行,拼接为了一行。
再测试,现在是正常速度了,但是查询时间依旧很高。Sql查询时间0.8秒,代码中平均1秒8左右,还有优化的空间。
将一列数据转换为了数组类型,查看一下内存占用,这一段占用了54比特,虽然占用不大,但是不知道为什么会mybatis处理时间这么久。
- 因为mybatis不知道数组的大小,先给数组设定一个初始大小,如果超出了数组长度,因为数组不能扩容,增加长度只能再复制一份到另一块内存中,复制的次数多了也就增加了计算时间。
- 数据需要在两个设备之间传输,磁盘和网络都需要时间。
2. 部分业务逻辑转到数据库中计算
再次优化sql,将一部分的逻辑放到Sql中处理,减少数据量。
业务上我需要统计programhandleidlist字段中id出现的次数,所以我直接在sql中做统计。
要统计每个数组中元素出现的次数,您需要首先使用 unnest 函数将数组展开为单独的行,然后使用 GROUP BY 和聚合函数(如 count)来计算每个元素的出现次数。这里是修改后的 SQL 语句:
SELECT elem, COUNT(*) AS count
FROM (
SELECT unnest(programhandleidlist) AS elem
FROM anti_transhandle
WHERE create_time BETWEEN '2024-01-08 00:00:00.0' AND '2024-01-09 00:00:00.0'
) sub
GROUP BY elem;
在这个查询中:
- unnest(programhandleidlist) 将每个 programhandleidlist 数组展开成多个行。
- GROUP BY elem 对每个独立的元素进行分组。
- COUNT(*) 计算每个分组(即每个元素)的出现次数。
这个查询将返回两列:一列是元素(elem),另一列是该元素在所有数组中出现的次数(count)。
这条sql在代码中执行时间是0.7秒,还是时间太长,毕竟数据库的数据量太大,搜了很多方法,已经是我能做到的最快查询了。
关系型数据库 不适合做海量数据计算查询。
“
这个业务场景牵扯到了海量数据的统计,并不适合使用关系型数据库,如果想要真正的做到毫秒级的查询,需要从设计上改变数据的存储结果。比如使用cilckhouse、hive等存储计算。
3. 引入缓存机制
减少查询数据库的次数,决定引入本地缓存机制。选择了Caffeine作为缓存框架,易于与Spring集成。
分析业务后,当天的统计数据必须查询数据库,但是查询历史日期的采用缓存的方式。如果业务中对时效性不敏感,也可以缓存当天的数据,每隔一段时间更新一次。我这里采用缓存历史日期的数据。
1.引入Caffeine依赖
<dependency>
<groupId>com.github.ben-manes.caffeine</groupId>
<artifactId>caffeine</artifactId>
<version>3.1.8</version>
</dependency>
2.配置Caffeine缓存
创建一个专门的Caffeine缓存配置。使用本地缓存选择淘汰策略很重要,由于我的业务场景使根据实现来查询,所以Caffeine将按照最近最少使用(LRU)的策略来淘汰旧数据成符合业务。
import com.github.benmanes.caffeine.cache.Caffeine;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.caffeine.CaffeineCacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.concurrent.TimeUnit;
@Configuration
@EnableCaching
public class CacheConfig {
@Bean
public CacheManager cacheManager() {
CaffeineCacheManager cacheManager = new CaffeineCacheManager();
cacheManager.setCaffeine(Caffeine.newBuilder()
.maximumSize(500)
.expireAfterWrite(60, TimeUnit.MINUTES));
return cacheManager;
}
}
3.修改ruleHitRate方法来使用Caffeine缓存
在计算昨天命中率的逻辑前加入缓存检查和更新的逻辑。
使用Caffeine缓存:
@Autowired
private CacheManager cacheManager; // 注入Spring的CacheManager
private static final String YESTERDAY_HIT_RATE_CACHE = "hitRateCache"; // 缓存名称
@Override
public RuleHitRateResponse ruleHitRate(LocalDate currentDate) {
// ... 其他代码 ...
// 使用缓存获取昨天的命中率
double hitRate = cacheManager.getCache(YESTERDAY_HIT_RATE_CACHE).get(currentDate.minusDays(1), () -> {
// 查询数据库
Map<String, String> hitRateList = dataTunnelClient.selectTransHandleFlowByTime(currentDate.minusDays(1));
// ... 其他代码 ...
// 返回计算后的结果
return hitRate;
});
// ... 其他代码 ...
}
总结
最后,测试接口,成功将接口从30秒降低到了0.8秒以内。
这次优化让我重新真正审视了关系型数据库的劣势。选择哪种类型的数据库,取决于具体的应用场景和需求。
- 关系型数据库(Mysql、Oracle等)适合事务性强、数据一致性和完整性要求高的应用。
- 列式数据库(HBase、ClickHouse等)则适合大数据量的分析和统计,特别是在读取性能方面有显著优势。
此次的业务场景显然更适合使用列式数据库,所以导致使用关系型数据库无论如何也不能够达到足够高的性能。
来源:juejin.cn/post/7324296963138863138
相关推荐
- go语言也可以做gui,go-fltk让你做出c++级别的桌面应用
-
大家都知道go语言生态并没有什么好的gui开发框架,“能用”的一个手就能数的清,好用的就更是少之又少。今天为大家推荐一个go的gui库go-fltk。它是通过cgo调用了c++的fltk库,性能非常高...
- 旧电脑的首选系统:TinyCore!体积小+精简+速度极快,你敢安装吗
-
这几天老毛桃整理了几个微型Linux发行版,准备分享给大家。要知道可供我们日常使用的Linux发行版有很多,但其中的一些发行版经常会被大家忽视。其实这些微型Linux发行版是一种非常强大的创新:在一台...
- codeblocks和VS2019下的fltk使用中文
-
在fltk中用中文有点问题。英文是这样。中文就成这个样子了。我查了查资料,说用UTF-8编码就行了。edit->Fileencoding->UTF-8然后保存文件。看下下边的编码指示确...
- FLTK(Fast Light Toolkit)一个轻量级的跨平台Python GUI库
-
FLTK(FastLightToolkit)是一个轻量级的跨平台GUI库,特别适用于开发需要快速、高效且简单界面的应用程序。本文将介绍Python中的FLTK库,包括其特性、应用场景以及如何通过代...
- 中科院开源 RISC-V 处理器“香山”流片,已成功运行 Linux
-
IT之家1月29日消息,去年6月份,中科院大学教授、中科院计算所研究员包云岗,发布了开源高性能RISC-V处理器核心——香山。近日,包云岗在社交平台晒出图片,香山芯片已流片,回片后...
- Linux 5.13内核有望合并对苹果M1处理器支持的初步代码
-
预计Linux5.13将初步支持苹果SiliconM1处理器,不过完整的支持工作可能还需要几年时间才能完全完成。虽然Linux已经可以在苹果SiliconM1上运行,但这需要通过一系列的补丁才能...
- Ubuntu系统下COM口测试教程(ubuntu port)
-
1、在待测试的板上下载minicom,下载minicom有两种方法:方法一:在Ubuntu软件中心里面搜索下载方法二:按“Ctrl+Alt+T”打开终端,打开终端后输入“sudosu”回车;在下...
- 湖北嵌入式软件工程师培训怎么选,让自己脱颖而出
-
很多年轻人毕业即失业、面试总是不如意、薪酬不满意、在家躺平。“就业难”该如何应对,参加培训是否能改变自己的职业走向,在湖北,有哪些嵌入式软件工程师培训怎么选值得推荐?粤嵌科技在嵌入式培训领域有十几年经...
- 新阁上位机开发---10年工程师的Modbus总结
-
前言我算了一下,今年是我跟Modbus相识的第10年,从最开始的简单应用到协议了解,从协议开发到协议讲解,这个陪伴了10年的协议,它一直没变,变的只是我对它的理解和认识。我一直认为Modbus协议的存...
- 创建你的第一个可运行的嵌入式Linux系统-5
-
@ZHangZMo在MicrochipBuildroot中配置QT5选择Graphic配置文件增加QT5的配置修改根文件系统支持QT5修改output/target/etc/profile配置文件...
- 如何在Linux下给zigbee CC2530实现上位机
-
0、前言网友提问如下:粉丝提问项目框架汇总下这个网友的问题,其实就是实现一个网关程序,内容分为几块:下位机,通过串口与上位机相连;下位机要能够接收上位机下发的命令,并解析这些命令;下位机能够根据这些命...
- Python实现串口助手 - 03串口功能实现
-
串口调试助手是最核心的当然是串口数据收发与显示的功能,pzh-py-com借助的是pySerial库实现串口收发功能,今天痞子衡为大家介绍pySerial是如何在pzh-py-com发挥功能的。一、...
- 为什么选择UART(串口)作为调试接口,而不是I2C、SPI等其他接口
-
UART(通用异步收发传输器)通常被选作调试接口有以下几个原因:简单性:协议简单:UART的协议非常简单,只需设置波特率、数据位、停止位和校验位就可以进行通信。相比之下,I2C和SPI需要处理更多的通...
- 同一个类,不同代码,Qt 串口类QSerialPort 与各种外设通讯处理
-
串口通讯在各种外设通讯中是常见接口,因为各种嵌入式CPU中串口标配,工业控制中如果不够还通过各种串口芯片进行扩展。比如spi接口的W25Q128FV.对于软件而言,因为驱动接口固定,软件也相对好写,因...
- 嵌入式linux为什么可以通过PC上的串口去执行命令?
-
1、uboot(负责初始化基本硬bai件,如串口,网卡,usb口等,然du后引导系统zhi运行)2、linux系统(真正的操作系统)3、你的应用程序(基于操作系统的软件应用)当你开发板上电时,u...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- go语言也可以做gui,go-fltk让你做出c++级别的桌面应用
- 旧电脑的首选系统:TinyCore!体积小+精简+速度极快,你敢安装吗
- codeblocks和VS2019下的fltk使用中文
- FLTK(Fast Light Toolkit)一个轻量级的跨平台Python GUI库
- 中科院开源 RISC-V 处理器“香山”流片,已成功运行 Linux
- Linux 5.13内核有望合并对苹果M1处理器支持的初步代码
- Ubuntu系统下COM口测试教程(ubuntu port)
- 湖北嵌入式软件工程师培训怎么选,让自己脱颖而出
- 新阁上位机开发---10年工程师的Modbus总结
- 创建你的第一个可运行的嵌入式Linux系统-5
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)