大分区表高并发性能提升100倍?阿里云RDS PostgreSQL 12特性解读
liebian365 2024-11-05 11:46 27 浏览 0 评论
本文作者:凌策,高级开发工程师
世界上几乎最强大的开源数据库系统 PostgreSQL,于 2019 年 10 月 3 日发布了 12 版本,该版本已经在阿里云正式发布。
PostgreSQL 12 在功能和性能上都有很大提升,如大分区表高并发性能提升百倍,B-tree 索引空间和性能优化,实现 SQL 2016 标准的 JSON 特性,支持多列 MCV(Most-Common-Value)统计,内联 CTE(Common table expressions)以及可插拔的表存储访问接口等。本文对部分特性进行解读。
分区表性能
PostgreSQL 对分区表的支持由来已久。在 10.0 之前,分区表需要用户通过继承的方式手动创建,从 10.0 开始支持声明式分区,即通过 SQL 直接创建分区表,改善了分区表的易用性;在 11 中,支持 HASH 分区,并在计划和执行阶段,增强分区裁剪策略,提升分区表查询性能;PostgreSQL 12 进一步增强了分区表的查询和数据导入性能,尤其对分区数量多的场景,查询优化效果尤为显著。
在阿里云创建两个同等规格(4c8g)的 RDS PostgreSQL 11 和 12 的实例,测试不同分区数情况下,使用 COPY 导入 1 亿行数据的性能对比如下。可见,随着分区数增多,导入性能始终优于 PostgreSQL 11。COPY 导入数据的性能提升得益于在 12 中支持了分区表批量插入,在次之前,仅支持一次一行的插入模式。
对于查询操作,在 PostgreSQL 10 中,会依次检查每个分区表,判断其可能有满足条件的数据,每个分区表的处理与普通表的处理流程类似;PostgreSQL 11 引入了分区裁剪特性,可以更早地定位需要访问的分区;PostgreSQL 12 则近一步将分区裁剪功能前置,避免为每个分区加载元数据并生成相应的内部结构,使得查询计划耗时进一步与无关的分区解耦。由此可见,该优化与查询条件的分区过滤性相关,分区过滤性越好,所需处理的分区越少,优化效果越好。
不同分区数下,分区键(同时也是主键)上的查询性能对比如下。可见,分区数越多,PostgreSQL 12 的性能提升越明显,最高提升达 150 倍。而随着分区数增加,PostgreSQL 12 的性能则保持相对稳定。
虽然分区表性能有大幅提升,但与单表相比,在很多场景下性能还有一定差距,在做表结构设计时,仍然需要结合实际业务场景,选择是否分区以及分区数量。
索引增强
B-tree 索引被广泛应用于数据库系统中,可以有效减少查询需要访问的数据量,提升查询性能。索引是一种 "空间换时间" 的查询优化策略,本身也会占用一些存储空间,其性能对查询也至关重要。PostgreSQL 12 提升了标准 B-tree 的整体性能,减少了磁盘空间占用,对于复合索引,其空间使用率最多可减少 40%,可以有效节省用户的磁盘空间;对于有重复项的 B-tree 索引,其性能也有所提升。另外,引入 REINDEX CONCURRENTLY 命令,用户可以在业务无感知的情况下重建索引。
我们通过测试直观感受一下 B-tree 索引的空间占用优化。分别在 PostgreSQL 11 和 12 中创建如下表和索引,并插入 2000 万行数据,VACUUM 更新统计信息。
CREATE TABLE foo (
aid bigint NOT NULL,
bid bigint NOT NULL
);
ALTER TABLE foo
ADD CONSTRAINT foo_pkey PRIMARY KEY (aid, bid);
CREATE INDEX foo_bid_idx ON foo(bid);
INSERT INTO foo (aid, bid)
SELECT i, i / 10000
FROM generate_series(1, 20000000) AS i;
VACUUM (ANALYZE) foo;
分别查看两个 PostgreSQL 版本中 foo_bid_idx 索引的大小,如下:
# PostgreSQL 11
postgres=> \di+ foo_bid_idx
List of relations
Schema | Name | Type | Owner | Table | Persistence | Size | Description
--------+-------------+-------+-------------+-------+-------------+--------+-------------
public | foo_bid_idx | index | postgres | foo | permanent | 544 MB |
(1 row)
# PostgreSQL 12
postgres=> \di+ foo_bid_idx
List of relations
Schema | Name | Type | Owner | Table | Persistence | Size | Description
--------+-------------+-------+-------------+-------+-------------+--------+-------------
public | foo_bid_idx | index | postgres | foo | permanent | 408 MB |
(1 row)
可见,PostgreSQL 11 的索引比 PostgreSQL 12 大 33%,在索引较多的场景下,如此大幅度的空间节省还是很可观的。
除 B-tree 索引外,其他索引也有增强。如减小生成 GiST、GIN 和 SP-GiST 索引的WAL日志的开销,支持用 GiST 创建覆盖索引,支持用 SP-GiST 索引的 distance 运算符执行 K-NN 查询等。
支持 SQL/JSON 路径语言(path language)
PostgreSQL 在之前的版本中就已经支持了 JSON 数据类型,并支持对简单 JSON 数据的查询操作,如果 JSON 数据比较复杂,如嵌套较多,包含数组等,则不能便捷地查询其中的值,往往需要依赖外部插件来实现,比如支持 SQL/JSON 路径语言 的 jsquery 插件。
PostgreSQL 12 对非结构化数据的支持再进一步。内置支持了 SQL 2016 标准引入的 JSON 特性和丰富的路径查询方法,引入新的数据类型 jsonpath 表示路径表达式(path expression),支持 JSON 上的各种复杂查询,不再依赖插件。具体的使用方法可以参考文档,在此不赘述。
参数控制 Prepared 计划
对于重复执行的 PREPARE 语句,PostgreSQL 会缓存其执行计划,执行 PREPARE 语句时,PostgreSQL 会自动选择是重新生成一个新的计划(通常称之为定制计划,custom plan),还是使用缓存的计划(即通用计划,generic plan),但在特定场景下,数据库的选择可能并不是最优的。PostgreSQL 12 为用户提供了一个参数 plan_cache_mode 来自主选择使用哪种计划,比如查询的参数如果总是固定的常量,则可以显式设置该参数,使优化器总是使用通用计划,避免 SQL 解析和重写的代价,从而优化查询性能。
执行 PREPARE 并运行,前 5 次均使用定制计划:
postgres=> prepare p(integer) as select aid from foo where aid=$1;
PREPARE
postgres=> EXPLAIN EXECUTE p(1);
QUERY PLAN
-------------------------------------------------------------------------
Index Only Scan using foo_pkey on foo (cost=0.44..1.56 rows=1 width=8)
Index Cond: (aid = 1)
(2 rows)
# 后续四次执行的结果在此省略
执行第 6 次时使用通用计划,如下:
postgres=> EXPLAIN EXECUTE p(1);
QUERY PLAN
-------------------------------------------------------------------------
Index Only Scan using foo_pkey on foo (cost=0.44..1.56 rows=1 width=8)
Index Cond: (aid = $1)
(2 rows)
重新执行 PREPARE,并设置 plan_cache_mode 为 force_generic_plan,观察计划使用情况,可见第 1 次执行时就会使用通用计划,而无需等到第 6 次执行。
postgres=> DEALLOCATE p;
DEALLOCATE
postgres=> prepare p(integer) as select aid from foo where aid=$1;
PREPARE
# plan_cache_mode 设置为 force_generic_plan
postgres=> set plan_cache_mode = force_generic_plan;
SET
postgres=> EXPLAIN EXECUTE p(1);
QUERY PLAN
-------------------------------------------------------------------------
Index Only Scan using foo_pkey on foo (cost=0.44..1.56 rows=1 width=8)
Index Cond: (aid = $1)
(2 rows)
是否使用通用计划可以通过执行计划中变量是否做了参数化处理来判断。
可插拔表存储接口
一直以来,PosgreSQL 都只支持 heap 表这一种存储引擎,其实现与其他模块耦合较多。PostgreSQL 12 借鉴自身索引可扩展的实现方式,抽象出一层存储引擎访问接口,为后续支持多种存储引擎奠定了基础,如 ZHeap、列存、K/V 存储、内存引擎等。
可插拔表存储访问接口的架构如下,在原有架构基础上,增加了 表访问管理层(Table Access Manager),提供统一的表访问接口,不同的存储引擎只需实现该接口即可接入。
目前,存储引擎仍然只支持 Heap 表,相信不久的将来会支持更多的存储引擎。感兴趣的读者也可以尝试自行实现一个存储引擎。
postgres=> select * from pg_am;
oid | amname | amhandler | amtype
------+--------+----------------------+--------
2 | heap | heap_tableam_handler | t
403 | btree | bthandler | i
405 | hash | hashhandler | i
783 | gist | gisthandler | i
2742 | gin | ginhandler | i
4000 | spgist | spghandler | i
3580 | brin | brinhandler | i
(7 rows)
丰富的插件支持
阿里云 RDS PostgreSQL 12 提供了更加丰富的插件支持,满足广大用户在一些垂直领域和特殊场景下的需求,以下介绍一些较常用、有趣的插件,更多支持插件可以参考 PostgreSQL 的支持插件列表。
- roaringbitmap 将 roaringbitmap 作为一种内置数据类型,提供丰富的函数支持,使用 Roaring Bitmap 算法,极大提升位图计算性能。
- RDKit 支持 mol 数据类型(描述分子类型)和 fp 数据类型(描述分子指纹),支持化学分子计算和化学分子检索等功能。
- Ganos 阿里云自研时空数据引擎,支持对空间/时间数据进行高效的存储、索引、查询和分析计算。
- PASE 高性能向量检索插件,使用业界成熟稳定且高效的 ANN(Approximate nearest neighbor)检索算法,包括 IVFFlat 和HNSW 算法,通过这两种算法,可以在 PostgreSQL 数据库中实现极高速向量查询。
- zhparser 中文分词插件,助力实现中文的全文检索。
- oss_fdw 使用该插件可以将 OSS 中的数据加载到 PostgreSQL 中,也支持将 PostgreSQL 中的数据写入 OSS 中。
总结
RDS PostgreSQL 12 无论功能和性能都有很大提升,包括分区表查询性能优化,B-tree 索引空间优化和性能提升,参数方式选择 Prepare 语句执行计划,内置的、功能全面的 SQL/JSON 路径语言和更加丰富的插件支持。可插拔表访问接口作为未来支持多存储引擎的基础,意义重大,目前仍然只支持 Heap 表,用户测暂时不会有感知。
除本文介绍的特性外,该版本还有很多其他特性,如多列 MCV(Most-Common-Value)统计,内联 CTE(Common table expressions)等,文中未及介绍,感兴趣的读者可以参考相关文献或者在阿里云购买实例进行体验。
参考文献
- https://www.postgresql.org/about/press/presskit12/
- https://www.postgresql.org/docs/12/release-12.html
- https://www.postgresql.org/docs/12/functions-json.html#FUNCTIONS-SQLJSON-PATH
- https://www.postgresql.org/docs/12/tableam.html
相关推荐
- 深度解密epoll 如何工作的?(epoll基本处理流程)
-
epoll...
- 大乐透第19082期:头奖开出7注1000万分落六地 奖池41亿元
-
2019年7月17日晚开奖的体彩超级大乐透第19082期开奖号码为:前区06、18、20、21、31,后区03、04。本期大乐透前区号码五区比为1:0:3:0:1,二区和四区号码没有给出。当期前区和值...
- 【开奖】4月27日周六:福彩、体彩(2021年4月27日体彩开奖结果)
-
4月27日开奖福彩3D第2019110期:61222选5第2019110期:0812202122排列3第19110期:303排列5第19110期:30305大乐透第19047期:0304...
- “红狒狒”落户哈尔滨铁路局(哈尔滨铁路红肠)
-
这几天,“红人”“红狒狒”在牡丹江机务段可引起了不小的轰动,众粉丝争相与其拍照留念,在该段人气爆棚!“红狒狒”到底何许人也?“红狒狒”,中文名:和谐3D型电力机车;绰号:红狒狒、番茄;制造商:大连机...
- 2D、3D、2.5D,做游戏还是搞噱头?玩家都晕了
-
前言游戏类型就像某种潮流,一种流行罢,另一种接棒成为主流。前两年的新作大多以“开放世界”为标签,在追求纯沙盒的过程中打造出一些细致的分类,比如说“类GTA沙盒”。诚然,纯碎的沙盒游戏并不多见,业内只有...
- 《战神4》PC版宣传片发布 GTX 1070即可60帧畅玩
-
在今年10月的时候索尼PlayStation官方正式宣布圣莫尼卡2018年的《战神4》将于2022年1月14日推出PC版本,官方在今天公布了一段PC版宣传片,并且公开了游戏的配置需求。下面让我们一起来...
- 男星深情好丈夫形象崩塌,半夜搂美女坐大腿,举止亲密
-
近日,于晓光被拍到深夜在酒吧玩,结束后与一名女子一起上车离开。上车后,女子直接坐在了他腿上,他也顺势搂着美女,美女满脸笑容地坐在他腿上玩手机离开。可能有人会好奇,于晓光是谁呢?于晓光是韩国艺人秋瓷炫的...
- d3d12dll丢失怎么修复?d3d12dll加载失败怎么解决?
-
d3d12.dll丢失怎么修复?d3d12.dll加载失败怎么解决?很多朋友想要运行游戏的时候都会遇到这个问题,这种情况该怎么办呢?今天系统之家小编给朋友们讲讲具体的解决方法,操作其实还蛮简单的。...
- 许多玩家反馈《生化4RE》PC一直崩溃 无法进入游戏
-
今日(3月24日),卡普空《生化危机4:重制版》正式发售,然而有部分PC玩家遇到了游戏崩溃等问题。很多玩家在贴吧发帖称游戏遇到了严重的崩溃问题,且经常反复,报错代码普遍为FatalD3Derror...
- 微软正式推出适用于WSL Linux的D3D12 GPU视频加速技术
-
今天,微软正式向WindowsSubsystemforLinux(WSL)用户发布了Direct3D12GPU视频加速支持。在微软通过WSL允许在Linux下使用Open...
- 《怪物猎人:崛起》曙光系统报错“Fatal d3d error”的解决办法
-
《怪物猎人:崛起》曙光系统报错“Fatald3derror”的解决办法不少小伙伴反应《怪物猎人:崛起》DLC曙光预载以后打不开游戏,出现了Fatald3derror类似的错误代码,这类问题的解...
- Mac+双屏,前端程序员的专业配置 - Loctek 乐歌 D3D 双屏电脑显示器支架
-
做FE也有一段日子了,电脑屏幕每天在设计稿、浏览器、IDE、即时通讯工具、Terminal、邮箱之间切换。虽然mac的工作区带来了很多灵活,但是依然略显不足。于是入手支架,把公司配的电脑和显示器发挥起...
- RPC 的原理和简单使用(rpc详解)
-
RPC的概念RPC,RemoteProcedureCall,翻译成中文就是远程过程调用,是一种进程间通信方式。它允许程序调用另一个地址空间(通常是共享网络的另一台机器上)的过程或函数。在调用的...
- 大厂开源的golang微服务rpc框架 — kitex
-
提前rpc估计所有的开发同学都知道,不知道的也无所谓,毕竟我也好几年没用了,今天带大家在复习一下。RPC(RemoteProcedureCall):远程过程调用,...
- 干货!一文掌握Protobuf所有语言所有用法,快收藏
-
说实话,Protobuf这个库,让人相见时难别亦难,东风无力百花残,每次等到要用它的时候,总感觉还没有完全掌握它的用法,而实际上等去百度或者谷歌的时候,教程都是多么的凌乱不堪。学会它,最直接关系到的,...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)