新版 C# 高效率编程指南 c#编程视频教程
liebian365 2024-11-12 13:08 18 浏览 0 评论
前言#
C# 从 7 版本开始一直到如今的 9 版本,加入了非常多的特性,其中不乏改善性能、增加程序健壮性和代码简洁性、可读性的改进,这里我整理一些使用新版 C# 的时候个人推荐的写法,可能不适用于所有的人,但是还是希望对你们有所帮助。
注意:本指南适用于 .NET 5 或以上版本。
使用 ref struct 做到 0 GC#
C# 7 开始引入了一种叫做 ref struct 的结构,这种结构本质是 struct ,结构存储在栈内存。但是与 struct 不同的是,该结构不允许实现任何接口,并由编译器保证该结构永远不会被装箱,因此不会给 GC 带来任何的压力。相对的,使用中就会有不能逃逸出栈的强制限制。
Span<T> 就是利用 ref struct 的产物,成功的封装出了安全且高性能的内存访问操作,且可在大多数情况下代替指针而不损失任何的性能。
Copyref struct MyStruct
{
public int Value { get; set; }
}
class RefStructGuide
{
static void Test()
{
MyStruct x = new MyStruct();
x.Value = 100;
Foo(x); // ok
Bar(x); // error, x cannot be boxed
}
static void Foo(MyStruct x) { }
static void Bar(object x) { }
}
使用 stackalloc 在栈上分配连续内存#
对于部分性能敏感却需要使用少量的连续内存的情况,不必使用数组,而可以通过 stackalloc 直接在栈上分配内存,并使用 Span<T> 来安全的访问,同样的,这么做可以做到 0 GC 压力。
stackalloc 允许任何的值类型结构,但是要注意,Span<T> 目前不支持 ref struct 作为泛型参数,因此在使用 ref struct 时需要直接使用指针。
Copyref struct MyStruct
{
public int Value { get; set; }
}
class AllocGuide
{
static unsafe void RefStructAlloc()
{
MyStruct* x = stackalloc MyStruct[10];
for (int i = 0; i < 10; i++)
{
*(x + i) = new MyStruct { Value = i };
}
}
static void StructAlloc()
{
Span<int> x = stackalloc int[10];
for (int i = 0; i < x.Length; i++)
{
x[i] = i;
}
}
}
使用 Span 操作连续内存#
C# 7 开始引入了 Span<T>,它封装了一种安全且高性能的内存访问操作方法,可用于在大多数情况下代替指针操作。
Copystatic void SpanTest()
{
Span<int> x = stackalloc int[10];
for (int i = 0; i < x.Length; i++)
{
x[i] = i;
}
ReadOnlySpan<char> str = "12345".AsSpan();
for (int i = 0; i < str.Length; i++)
{
Console.WriteLine(str[i]);
}
}
性能敏感时对于频繁调用的函数使用 SkipLocalsInit#
C# 为了确保代码的安全会将所有的局部变量在声明时就进行初始化,无论是否必要。一般情况下这对性能并没有太大影响,但是如果你的函数在操作很多栈上分配的内存,并且该函数还是被频繁调用的,那么这一消耗的副作用将会被放大变成不可忽略的损失。
因此你可以使用 SkipLocalsInit 这一特性禁用自动初始化局部变量的行为。
Copy[SkipLocalsInit]
unsafe static void Main()
{
Guid g;
Console.WriteLine(*&g);
}
上述代码将输出不可预期的结果,因为 g 并没有被初始化为 0。另外,访问未初始化的变量需要在 unsafe 上下文中使用指针进行访问。
使用函数指针代替 Marshal 进行互操作#
C# 9 带来了函数指针功能,该特性支持 managed 和 unmanaged 的函数,在进行 native interop 时,使用函数指针将能显著改善性能。
例如,你有如下 C++ 代码:
Copy#define UNICODE
#define WIN32
#include <cstring>
extern "C" __declspec(dllexport) char* __cdecl InvokeFun(char* (*foo)(int)) {
return foo(5);
}
并且你编写了如下 C# 代码进行互操作:
Copy[DllImport("./Test.dll")]
static extern string InvokeFun(delegate* unmanaged[Cdecl]<int, IntPtr> fun);
[UnmanagedCallersOnly(CallConvs = new[] { typeof(CallConvCdecl) })]
public static IntPtr Foo(int x)
{
var str = Enumerable.Repeat("x", x).Aggregate((a, b) => #34;{a}{b}");
return Marshal.StringToHGlobalAnsi(str);
}
static void Main(string[] args)
{
var callback = (delegate* unmanaged[Cdecl]<int, nint>)(delegate*<int, nint>)&Foo;
Console.WriteLine(InvokeFun(callback));
}
上述代码中,首先 C# 将自己的 Foo 方法作为函数指针传给了 C++ 的 InvokeFun 函数,然后 C++ 用参数 5 调用该函数并返回其返回值到 C# 的调用方。
注意到上述代码还用了 UnmanagedCallersOnly 这一特性,这样可以告诉编译器该方法只会从 unmanaged 的代码被调用,因此编译器可以做一些额外的优化。
使用函数指针产生的 IL 指令非常高效:
Copyldftn native int Test.Program::Foo(int32)
stloc.0
ldloc.0
call string Test.Program::InvokeFun(method native int *(int32))
除了 unmanaged 的情况外,managed 函数也是可以使用函数指针的:
Copystatic void Foo(int v) { }
unsafe static void Main(string[] args)
{
delegate* managed<int, void> fun = &Foo;
fun(4);
}
产生的代码相对于原本的 Delegate 来说更加高效:
Copyldftn void Test.Program::Foo(int32)
stloc.0
ldc.i4.4
ldloc.0
calli void(int32)
使用模式匹配#
有了if-else、as和强制类型转换,为什么要使用模式匹配呢?有三方面原因:性能、鲁棒性和可读性。
为什么说性能也是一个原因呢?因为 C# 编译器会根据你的模式编译出最优的匹配路径。
考虑一下以下代码(代码 1):
Copyint Match(int v)
{
if (v > 3)
{
return 5;
}
if (v < 3)
{
if (v > 1)
{
return 6;
}
if (v > -5)
{
return 7;
}
else
{
return 8;
}
}
return 9;
}
如果改用模式匹配,配合 switch 表达式写法则变成(代码 2):
Copyint Match(int v)
{
return v switch
{
> 3 => 5,
< 3 and > 1 => 6,
< 3 and > -5 => 7,
< 3 => 8,
_ => 9
};
}
以上代码会被编译器编译为:
Copyint Match(int v)
{
if (v > 1)
{
if (v <= 3)
{
if (v < 3)
{
return 6;
}
return 9;
}
return 5;
}
if (v > -5)
{
return 7;
}
return 8;
}
我们计算一下平均比较次数:
代码56789总数平均代码 113442142.8代码 223223122.4
可以看到使用模式匹配时,编译器选择了更优的比较方案,你在编写的时候无需考虑如何组织判断语句,心智负担降低,并且代码 2 可读性和简洁程度显然比代码 1 更好,有哪些条件分支一目了然。
甚至遇到类似以下的情况时:
Copyint Match(int v)
{
return v switch
{
1 => 5,
2 => 6,
3 => 7,
4 => 8,
_ => 9
};
}
编译器会直接将代码从条件判断语句编译成 switch 语句:
Copyint Match(int v)
{
switch (v)
{
case 1:
return 5;
case 2:
return 6;
case 3:
return 7;
case 4:
return 8;
default:
return 9;
}
}
如此一来所有的判断都不需要比较(因为 switch 可根据 HashCode 直接跳转)。
编译器非常智能地为你选择了最佳的方案。
那鲁棒性从何谈起呢?假设你漏掉了一个分支:
Copyint v = 5;
var x = v switch
{
> 3 => 1,
< 3 => 2
};
此时编译的话,编译器就会警告你漏掉了 v 可能为 3 的情况,帮助减少程序出错的可能性。
最后一点,可读性。
假设你现在有这样的东西:
Copyabstract class Entry { }
class UserEntry : Entry
{
public int UserId { get; set; }
}
class DataEntry : Entry
{
public int DataId { get; set; }
}
class EventEntry : Entry
{
public int EventId { get; set; }
// 如果 CanRead 为 false 则查询的时候直接返回空字符串
public bool CanRead { get; set; }
}
现在有接收类型为 Entry 的参数的一个函数,该函数根据不同类型的 Entry 去数据库查询对应的 Content,那么只需要写:
Copystring QueryMessage(Entry entry)
{
return entry switch
{
UserEntry u => dbContext1.User.FirstOrDefault(i => i.Id == u.UserId).Content,
DataEntry d => dbContext1.Data.FirstOrDefault(i => i.Id == d.DataId).Content,
EventEntry { EventId: var eventId, CanRead: true } => dbContext1.Event.FirstOrDefault(i => i.Id == eventId).Content,
EventEntry { CanRead: false } => "",
_ => throw new InvalidArgumentException("无效的参数")
};
}
更进一步,假如 Entry.Id 分布在了数据库 1 和 2 中,如果在数据库 1 当中找不到则需要去数据库 2 进行查询,如果 2 也找不到才返回空字符串,由于 C# 的模式匹配支持递归模式,因此只需要这样写:
Copystring QueryMessage(Entry entry)
{
return entry switch
{
UserEntry u => dbContext1.User.FirstOrDefault(i => i.Id == u.UserId) switch
{
null => dbContext2.User.FirstOrDefault(i => i.Id == u.UserId)?.Content ?? "",
var found => found.Content
},
DataEntry d => dbContext1.Data.FirstOrDefault(i => i.Id == d.DataId) switch
{
null => dbContext2.Data.FirstOrDefault(i => i.Id == u.DataId)?.Content ?? "",
var found => found.Content
},
EventEntry { EventId: var eventId, CanRead: true } => dbContext1.Event.FirstOrDefault(i => i.Id == eventId) switch
{
null => dbContext2.Event.FirstOrDefault(i => i.Id == eventId)?.Content ?? "",
var found => found.Content
},
EventEntry { CanRead: false } => "",
_ => throw new InvalidArgumentException("无效的参数")
};
}
就全部搞定了,代码非常简洁,而且数据的流向一眼就能看清楚,就算是没有接触过这部分代码的人看一下模式匹配的过程,也能一眼就立刻掌握各分支的情况,而不需要在一堆的 if-else 当中梳理这段代码到底干了什么。
使用记录类型和不可变数据#
record 作为 C# 9 的新工具,配合 init 仅可初始化属性,为我们带来了高效的数据交互能力和不可变性。
消除可变性意味着无副作用,一个无副作用的函数无需担心数据同步互斥问题,因此在无锁的并行编程中非常有用。
Copyrecord Point(int X, int Y);
简单的一句话等价于我们写了如下代码,帮我们解决了 ToString() 格式化输出、基于值的 GetHashCode() 和相等判断等等各种问题:
Copyinternal class Point : IEquatable<Point>
{
private readonly int x;
private readonly int y;
protected virtual Type EqualityContract => typeof(Point);
public int X
{
get => x;
set => x = value;
}
public int Y
{
get => y;
set => y = value;
}
public Point(int X, int Y)
{
x = X;
y = Y;
}
public override string ToString()
{
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.Append("Point");
stringBuilder.Append(" { ");
if (PrintMembers(stringBuilder))
{
stringBuilder.Append(" ");
}
stringBuilder.Append("}");
return stringBuilder.ToString();
}
protected virtual bool PrintMembers(StringBuilder builder)
{
builder.Append("X");
builder.Append(" = ");
builder.Append(X.ToString());
builder.Append(", ");
builder.Append("Y");
builder.Append(" = ");
builder.Append(Y.ToString());
return true;
}
public static bool operator !=(Point r1, Point r2)
{
return !(r1 == r2);
}
public static bool operator ==(Point r1, Point r2)
{
if ((object)r1 != r2)
{
if ((object)r1 != null)
{
return r1.Equals(r2);
}
return false;
}
return true;
}
public override int GetHashCode()
{
return (EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<int>.Default.GetHashCode(x)) * -1521134295 + EqualityComparer<int>.Default.GetHashCode(y);
}
public override bool Equals(object obj)
{
return Equals(obj as Point);
}
public virtual bool Equals(Point other)
{
if ((object)other != null && EqualityContract == other.EqualityContract && EqualityComparer<int>.Default.Equals(x, other.x))
{
return EqualityComparer<int>.Default.Equals(y, other.y);
}
return false;
}
public virtual Point Clone()
{
return new Point(this);
}
protected Point(Point original)
{
x = original.x;
y = original.y;
}
public void Deconstruct(out int X, out int Y)
{
X = this.X;
Y = this.Y;
}
}
注意到 x 与 y 都是 readonly 的,因此一旦实例创建了就不可变,如果想要变更可以通过 with 创建一份副本,于是这种方式彻底消除了任何的副作用。
Copyvar p1 = new Point(1, 2);
var p2 = p1 with { Y = 3 }; // (1, 3)
当然,你也可以自己使用 init 属性表示这个属性只能在初始化时被赋值:
Copyclass Point
{
public int X { get; init; }
public int Y { get; init; }
}
这样一来,一旦 Point 被创建,则 X 和 Y 的值就不会被修改了,可以放心地在并行编程模型中使用,而不需要加锁。
Copyvar p1 = new Point { X = 1, Y = 2 };
p1.Y = 3; // error
var p2 = p1 with { Y = 3 }; //ok
使用 readonly 类型#
上面说到了不可变性的重要性,当然,struct 也可以是只读的:
Copyreadonly struct Foo
{
public int X { get; set; } // error
}
上面的代码会报错,因为违反了 X 只读的约束。
如果改成:
Copyreadonly struct Foo
{
public int X { get; }
}
或
Copyreadonly struct Foo
{
public int X { get; init; }
}
则不会存在问题。
Span<T> 本身是一个 readonly ref struct,通过这样做保证了 Span<T> 里的东西不会被意外的修改,确保不变性和安全。
使用局部函数而不是 lambda 创建临时委托#
在使用 Expression<Func<>> 作为参数的 API 时,使用 lambda 表达式是非常正确的,因为编译器会把我们写的 lambda 表达式编译成 Expression Tree,而非直观上的函数委托。
而在单纯只是 Func<>、Action<> 时,使用 lambda 表达式恐怕不是一个好的决定,因为这样做必定会引入一个新的闭包,造成额外的开销和 GC 压力。从 C# 8 开始,我们可以使用局部函数很好的替换掉 lambda:
Copyint SomeMethod(Func<int, int> fun)
{
if (fun(3) > 3) return 3;
else return fun(5);
}
void Caller()
{
int Foo(int v) => v + 1;
var result = SomeMethod(Foo);
Console.WriteLine(result);
}
以上代码便不会导致一个多余的闭包开销。
使用 ValueTask 代替 Task#
我们在遇到 Task<T> 时,大多数情况下只是需要简单的对其进行 await 而已,而并不需要将其保存下来以后再 await,那么 Task<T> 提供的很多的功能则并没有被使用,反而在高并发下,由于反复分配 Task 导致 GC 压力增加。
这种情况下,我们可以使用 ValueTask<T> 代替 Task<T>:
Copyasync ValueTask<int> Foo()
{
await Task.Delay(5000);
return 5;
}
async ValueTask Caller()
{
await Foo();
}
由于 ValueTask<T> 是值类型结构,因此不会在堆上分配内存,于是可以做到 0 GC。
实现解构函数代替创建元组#
如果我们想要把一个类型中的数据提取出来,我们可以选择返回一个元组,其中包含我们需要的数据:
Copyclass Foo
{
private int x;
private int y;
public Foo(int x, int y)
{
this.x = x;
this.y = y;
}
public (int, int) Deconstruct()
{
return (x, y);
}
}
class Program
{
static void Bar(Foo v)
{
var (x, y) = v.Deconstruct();
Console.WriteLine(#34;X = {x}, Y = {y}");
}
}
上述代码会导致一个 ValueTuple<int, int> 的开销,如果我们将代码改成实现结构方法:
Copyclass Foo
{
private int x;
private int y;
public Foo(int x, int y)
{
this.x = x;
this.y = y;
}
public void Deconstruct(out int x, out int y)
{
x = this.x;
y = this.y;
}
}
class Program
{
static void Bar(Foo v)
{
var (x, y) = v;
Console.WriteLine(#34;X = {x}, Y = {y}");
}
}
则不仅省掉了 Deconstruct() 的调用,同时还没有任何的额外开销。你可以看到实现 Deconstruct 函数并不需要让你的类型实现任何的接口,从根本上杜绝了装箱的可能性,这是一种 0 开销抽象。另外,解构函数还能用于做模式匹配,你可以像使用元组一样地使用解构函数(下面代码的意思是,当 x 为 3 时取 y,否则取 x + y):
Copyvoid Bar(Foo v)
{
var result = v switch
{
Foo (3, var y) => y,
Foo (var x, var y) => x + y,
_ => 0
};
Console.WriteLine(result);
}
总结#
在合适的时候使用 C# 的新特性,不但可以提升开发效率,同时还能兼顾代码质量和运行效率的提升。
但是切忌滥用。新特性的引入对于我们写高质量的代码无疑有很大的帮助,但是如果不分时宜地使用,可能会带来反效果。
希望本文能对各位开发者使用新版 C# 时带来一定的帮助,感谢阅读。
作者: hez2010
出处:https://www.cnblogs.com/hez2010/p/13724904.html
相关推荐
- 4万多吨豪华游轮遇险 竟是因为这个原因……
-
(观察者网讯)4.7万吨豪华游轮搁浅,竟是因为油量太低?据观察者网此前报道,挪威游轮“维京天空”号上周六(23日)在挪威近海发生引擎故障搁浅。船上载有1300多人,其中28人受伤住院。经过数天的调...
- “菜鸟黑客”必用兵器之“渗透测试篇二”
-
"菜鸟黑客"必用兵器之"渗透测试篇二"上篇文章主要针对伙伴们对"渗透测试"应该如何学习?"渗透测试"的基本流程?本篇文章继续上次的分享,接着介绍一下黑客们常用的渗透测试工具有哪些?以及用实验环境让大家...
- 科幻春晚丨《震动羽翼说“Hello”》两万年星间飞行,探测器对地球的最终告白
-
作者|藤井太洋译者|祝力新【编者按】2021年科幻春晚的最后一篇小说,来自大家喜爱的日本科幻作家藤井太洋。小说将视角放在一颗太空探测器上,延续了他一贯的浪漫风格。...
- 麦子陪你做作业(二):KEGG通路数据库的正确打开姿势
-
作者:麦子KEGG是通路数据库中最庞大的,涵盖基因组网络信息,主要注释基因的功能和调控关系。当我们选到了合适的候选分子,单变量研究也已做完,接着研究机制的时便可使用到它。你需要了解你的分子目前已有哪些...
- 知存科技王绍迪:突破存储墙瓶颈,详解存算一体架构优势
-
智东西(公众号:zhidxcom)编辑|韦世玮智东西6月5日消息,近日,在落幕不久的GTIC2021嵌入式AI创新峰会上,知存科技CEO王绍迪博士以《存算一体AI芯片:AIoT设备的算力新选择》...
- 每日新闻播报(September 14)_每日新闻播报英文
-
AnOscarstatuestandscoveredwithplasticduringpreparationsleadinguptothe87thAcademyAward...
- 香港新巴城巴开放实时到站数据 供科技界研发使用
-
中新网3月22日电据香港《明报》报道,香港特区政府致力推动智慧城市,鼓励公私营机构开放数据,以便科技界研发使用。香港运输署21日与新巴及城巴(两巴)公司签署谅解备忘录,两巴将于2019年第3季度,开...
- 5款不容错过的APP: Red Bull Alert,Flipagram,WifiMapper
-
本周有不少非常出色的app推出,鸵鸟电台做了一个小合集。亮相本周榜单的有WifiMapper's安卓版的app,其中包含了RedBull的一款新型闹钟,还有一款可爱的怪物主题益智游戏。一起来看看我...
- Qt动画效果展示_qt显示图片
-
今天在这篇博文中,主要实践Qt动画,做一个实例来讲解Qt动画使用,其界面如下图所示(由于没有录制为gif动画图片,所以请各位下载查看效果):该程序使用应用程序单窗口,主窗口继承于QMainWindow...
- 如何从0到1设计实现一门自己的脚本语言
-
作者:dong...
- 三年级语文上册 仿写句子 需要的直接下载打印吧
-
描写秋天的好句好段1.秋天来了,山野变成了美丽的图画。苹果露出红红的脸庞,梨树挂起金黄的灯笼,高粱举起了燃烧的火把。大雁在天空一会儿写“人”字,一会儿写“一”字。2.花园里,菊花争奇斗艳,红的似火,粉...
- C++|那些一看就很简洁、优雅、经典的小代码段
-
目录0等概率随机洗牌:1大小写转换2字符串复制...
- 二年级上册语文必考句子仿写,家长打印,孩子照着练
-
二年级上册语文必考句子仿写,家长打印,孩子照着练。具体如下:...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)