利用遗传算法求解几何问题
liebian365 2024-11-19 06:32 17 浏览 0 评论
最近看了一个关于“令人难以置信的人工智能发明”的ted演讲:https://www.ted.com/talks/maurice_conti_the_incredible_inventions_of_intuitive_ai
这个ted演讲的特色是使用直观的人工智能生成汽车模型。这部分内容很简短,没有详细说明什么类型的人工智能以及它是如何实现的,所以我决定尝试用遗传算法复制这个项目的一个小规模版本。
我为什么选择遗传算法?与神经网络不同的是,遗传算法可以很容易地生成内容,而无需对图像进行卷积,然后将其转换回原始尺寸。但是,要找到正确格式的汽车模型数据是极其困难的。
概述了项目类型后,我应该如何简化问题?
概念
我将用简单的想法来代替制造低空气阻力的汽车,即以点连接的方式创建一个由n个点组成的最大区域的形状。
形状的面积将使用鞋带(Shoelace )公式计算。从名称中可以推导出它是如何工作的:点坐标的交叉乘法创建了鞋带类型模式。
然后我将使用一种遗传算法(改编自这段代码:https://troysquillaci.me/simple-genetic-algorithm.html )来生成一组数字,然后将这些数字转换为坐标,从而绘制出一个形状。
代码
步骤1 |依赖项
import random
import numpy as np
from IPython.display import clear_outputdef sigmoid(x):
return 1/(1+np.exp(-x))
def PolyArea(x,y):
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
导入程序运行所需的基本依赖项。random用于随机生成智能体,numpy用于初始化和操作矩阵,IPython display用于清除屏幕上的混乱。
为了简单起见,我将在这个项目中使用的唯一激活函数是sigmoid函数。
polyarea函数是以numpy为数学基础的鞋带算法的实现。
步骤2 |实现类
class genetic_algorithm:
def execute(pop_size,generations,threshold,network):
class Agent:
def __init__(self,network):
class neural_network:
def __init__(self,network):
self.weights = []
self.activations = []
for layer in network:
if layer[0] != None:
input_size = layer[0]
else:
input_size = network[network.index(layer)-1][1]
output_size = layer[1]
activation = layer[2]
self.weights.append(np.random.randn(input_size,output_size))
self.activations.append(activation)
def propagate(self,data):
input_data = data
for i in range(len(self.weights)):
z = np.dot(input_data,self.weights[i])
a = self.activations[i](z)
input_data = a
yhat = a
return yhat
self.neural_network = neural_network(network)
self.fitness = 0
self.gene_drive = []
def __str__(self):
return 'Loss: ' + str(self.fitness[0])
这是程序的开始,创建了遗传算法类和执行函数。
在agent的init中,初始化一个神经网络类,并根据给定的矩阵结构随机生成其权重。
步骤3 |创建种群
def generate_agents(population, network):
return [Agent(network) for _ in range(population)]
该函数以种群大小和网络结构为参数,生成智能体的种群,神经网络随机生成权值。
步骤4 |计算适合度
def fitness(agents):
for agent in agents:
total_area = 0
points = agent.neural_network.propagate(np.random.randn(1,semi_epochs))
for shape in points:
x = list(shape[:num_points])
y = list(shape[num_points:])
y.insert(0,0)
x.insert(0,0)
y.insert(-1,0)
x.insert(-1,0)
total_area += PolyArea(x,y)
agent.fitness = total_area/semi_epochs
return agents
我们将潜在点作为神经网络的输入。正因为如此,网络将进行多次尝试来生成形状,并记录这些形状的平均面积。
理论上,该算法将生成一个智能体,该智能体可以一致地生成具有n个点的高区域形状。观察这些形状可以帮助我们了解如何创建大面积的区域。
步骤5 |选择
def selection(agents):
agents = sorted(agents, key=lambda agent: agent.fitness, reverse=True)
print('\n'.join(map(str, agents)))
agents = agents[:int(0.2 * len(agents))]
return agents
程序的这一部分是选择算法,它根据智能体的适合度按逆序对它们进行排序。然后它会保留前五名。
步骤6 |交叉
def crossover(agents,network,pop_size):
offspring = []
for _ in range((pop_size - len(agents)) // 2):
parent1 = random.choice(agents)
parent2 = random.choice(agents)
child1 = Agent(network)
child2 = Agent(network)
shapes = [a.shape for a in parent1.neural_network.weights]
genes1 = np.concatenate([a.flatten() for a in parent1.neural_network.weights])
genes2 = np.concatenate([a.flatten() for a in parent2.neural_network.weights])
split = random.randint(0,len(genes1)-1)child1_genes = np.array(genes1[0:split].tolist() + genes2[split:].tolist())
child2_genes = np.array(genes1[0:split].tolist() + genes2[split:].tolist())
for gene in parent1.gene_drive:
child1_genes[gene] = genes1[gene]
child2_genes[gene] = genes1[gene]
for gene in parent2.gene_drive:
child1_genes[gene] = genes2[gene]
child2_genes[gene] = genes2[gene]
child1.neural_network.weights = unflatten(child1_genes,shapes)
child2.neural_network.weights = unflatten(child2_genes,shapes)
offspring.append(child1)
offspring.append(child2)
agents.extend(offspring)
return agents
从种群的20%中随机选出两个父类。然后繁殖。如何做到这一点:
- 他们的权重平坦化(flatten);
- 找到一个随机的交点。这一点是单亲的遗传信息结束的地方,也是单亲遗传信息开始的地方;
- 创建两个子代,然后将其添加到智能体列表中。这些子对象彼此不同,因为它们有不同的交点。
这有希望让优质父类的优良品质遗传给子代。
步骤7 |突变
def mutation(agents):
for agent in agents:
if random.uniform(0.0, 1.0) <= 0.1:
weights = agent.neural_network.weights
shapes = [a.shape for a in weights]flattened = np.concatenate([a.flatten() for a in weights])
randint = random.randint(0,len(flattened)-1)
flattened[randint] = np.random.randn()newarray = []
indeweights = 0
for shape in shapes:
size = np.product(shape)
newarray.append(flattened[indeweights : indeweights + size].reshape(shape
indeweights += size
agent.neural_network.weights = newarray
return agents
有10%的几率发生突变。在这种情况下,变异指的是某个权重值被一个随机浮点值替换。通过将权重展平,找到要更改的随机权重。
步骤9 |执行
for i in range(generations):
print('Generation',str(i),':')
agents = generate_agents(pop_size,network)
agents = fitness(agents)
agents = selection(agents)
agents = crossover(agents,network,pop_size)
agents = mutation(agents)
agents = fitness(agents)
if any(agent.fitness > threshold for agent in agents):
print('Threshold met at generation '+str(i)+' !')
if i % 100:
clear_output()
return agents[0]
将最后一段代码粘贴到函数中,函数应该在调用时运行。
num_points = 3
semi_epochs = 100
network = [[semi_epochs,100,sigmoid],[None,num_points*2,sigmoid]]
ga = genetic_algorithm
agent = ga.execute(100,100,10,network)
weights = agent.neural_network.weights
我们可以改变程序用来创建形状的点的数量,以及程序可以生成点的次数,以得到平均值。
相关推荐
- “版本末期”了?下周平衡补丁!国服最强5套牌!上分首选
-
明天,酒馆战棋就将迎来大更新,也聊了很多天战棋相关的内容了,趁此机会,给兄弟们穿插一篇构筑模式的卡组推荐!老规矩,我们先来看10职业胜率。目前10职业胜率排名与一周前基本类似,没有太多的变化。平衡补丁...
- VS2017 C++ 程序报错“error C2065:“M_PI”: 未声明的标识符"
-
首先,程序中头文件的选择,要选择头文件,在文件中是没有对M_PI的定义的。选择:项目——>”XXX属性"——>配置属性——>C/C++——>预处理器——>预处理器定义,...
- 东营交警实名曝光一批酒驾人员名单 88人受处罚
-
齐鲁网·闪电新闻5月24日讯酒后驾驶是对自己和他人生命安全极不负责的行为,为守护大家的平安出行路,东营交警一直将酒驾作为重点打击对象。5月23日,东营交警公布最新一批饮酒、醉酒名单。对以下驾驶人醉酒...
- Qt界面——搭配QCustomPlot(qt platform)
-
这是我第一个使用QCustomPlot控件的上位机,通过串口精确的5ms发送一次数据,再将读取的数据绘制到图表中。界面方面,尝试卡片式设计,外加QSS简单的配了个色。QCustomPlot官网:Qt...
- 大话西游2分享赢取种族坐骑手办!PK趣闻录由你书写
-
老友相聚,仗剑江湖!《大话西游2》2021全民PK季4月激燃打响,各PK玩法鏖战齐开,零门槛参与热情高涨。PK季期间,不仅各种玩法奖励丰厚,参与PK趣闻录活动,投稿自己在PK季遇到的趣事,还有机会带走...
- 测试谷歌VS Code AI 编程插件 Gemini Code Assist
-
用ClaudeSonnet3.7的天气测试编码,让谷歌VSCodeAI编程插件GeminiCodeAssist自动编程。生成的文件在浏览器中的效果如下:(附源代码)VSCode...
- 顾爷想知道第4.5期 国服便利性到底需优化啥?
-
前段时间DNF国服推出了名为“阿拉德B计划”的系列改版计划,截至目前我们已经看到了两项实装。不过关于便利性上,国服似乎还有很多路要走。自从顾爷回归DNF以来,几乎每天都在跟我抱怨关于DNF里面各种各样...
- 掌握Visual Studio项目配置【基础篇】
-
1.前言VisualStudio是Windows上最常用的C++集成开发环境之一,简称VS。VS功能十分强大,对应的,其配置系统较为复杂。不管是对于初学者还是有一定开发经验的开发者来说,捋清楚VS...
- 还嫌LED驱动设计套路深?那就来看看这篇文章吧
-
随着LED在各个领域的不同应用需求,LED驱动电路也在不断进步和发展。本文从LED的特性入手,推导出适合LED的电源驱动类型,再进一步介绍各类LED驱动设计。设计必读:LED四个关键特性特性一:非线...
- Visual Studio Community 2022(VS2022)安装图文方法
-
直接上步骤:1,首先可以下载安装一个VisualStudio安装器,叫做VisualStudioinstaller。这个安装文件很小,很快就安装完成了。2,打开VisualStudioins...
- Qt添加MSVC构建套件的方法(qt添加c++11)
-
前言有些时候,在Windows下因为某些需求需要使用MSVC编译器对程序进行编译,假设我们安装Qt的时候又只是安装了MingW构建套件,那么此时我们该如何给现有的Qt添加一个MSVC构建套件呢?本文以...
- Qt为什么站稳c++GUI的top1(qt c)
-
为什么现在QT越来越成为c++界面编程的第一选择,从事QT编程多年,在这之前做C++界面都是基于MFC。当时为什么会从MFC转到QT?主要原因是MFC开发界面想做得好看一些十分困难,引用第三方基于MF...
- qt开发IDE应该选择VS还是qt creator
-
如果一个公司选择了qt来开发自己的产品,在面临IDE的选择时会出现vs或者qtcreator,选择qt的IDE需要结合产品需求、部署平台、项目定位、程序猿本身和公司战略,因为大的软件产品需要明确IDE...
- Qt 5.14.2超详细安装教程,不会来打我
-
Qt简介Qt(官方发音[kju:t],音同cute)是一个跨平台的C++开库,主要用来开发图形用户界面(GraphicalUserInterface,GUI)程序。Qt是纯C++开...
- Cygwin配置与使用(四)——VI字体和颜色的配置
-
简介:VI的操作模式,基本上VI可以分为三种状态,分别是命令模式(commandmode)、插入模式(Insertmode)和底行模式(lastlinemode),各模式的功能区分如下:1)...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- “版本末期”了?下周平衡补丁!国服最强5套牌!上分首选
- VS2017 C++ 程序报错“error C2065:“M_PI”: 未声明的标识符"
- 东营交警实名曝光一批酒驾人员名单 88人受处罚
- Qt界面——搭配QCustomPlot(qt platform)
- 大话西游2分享赢取种族坐骑手办!PK趣闻录由你书写
- 测试谷歌VS Code AI 编程插件 Gemini Code Assist
- 顾爷想知道第4.5期 国服便利性到底需优化啥?
- 掌握Visual Studio项目配置【基础篇】
- 还嫌LED驱动设计套路深?那就来看看这篇文章吧
- Visual Studio Community 2022(VS2022)安装图文方法
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)