为什么 Java 中 2*(i*i) 比 2*i*i 更快?
liebian365 2024-11-27 17:08 2 浏览 0 评论
有人在 Stack Overflow 上提问,为什么 Java 中的 2 * (i * i) 比 2 * i * i 要快?
他做了如下测试:
运行下面这段Java代码平均需要0.50到0.55秒:
public static void main(String[] args) { long startTime = System.nanoTime(); int n = 0; for (int i = 0; i < 1000000000; i++) { n += 2 * (i * i); } System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s"); System.out.println("n = " + n); }
如果把2 *(i * i)替换成2 * i * i,那么运行时间在0.60到0.65秒之间。为什么出现这样的结果?
我把程序的每个版本运行了15次,两次之间交替运行。结果如下:
2*(i*i) | 2*i*i ----------+---------- 0.5183738 | 0.6246434 0.5298337 | 0.6049722 0.5308647 | 0.6603363 0.5133458 | 0.6243328 0.5003011 | 0.6541802 0.5366181 | 0.6312638 0.515149 | 0.6241105 0.5237389 | 0.627815 0.5249942 | 0.6114252 0.5641624 | 0.6781033 0.538412 | 0.6393969 0.5466744 | 0.6608845 0.531159 | 0.6201077 0.5048032 | 0.6511559 0.5232789 | 0.6544526
2 * i * i的最快运行时间比2 * (i * i)最慢运行时间还要长。如果两者效率相当,发生这种情况的可能性小于1/2^15 * 100% = 0.00305%。
来自 rustyx 的回答,获得 1172 赞同
两种方式的字节码顺序略有不同。
2 * (i * i):
iconst_2 iload0 iload0 imul imul iadd
对比2 * i * i:
iconst_2 iload0 imul iload0 imul iadd
乍看之下没有什么不同,如果有的话,第二个版本看起来少了一个slot。
因此,需要更深入研究底层(JIT)。
请记住,对小循环JIT会主动展开。对2 * (i * i)可以看到实际展开了16x:
030 B2: # B2 B3 <- B1 B2 Loop: B2-B2 inner main of N18 Freq: 1e+006 030 addl R11, RBP # int 033 movl RBP, R13 # spill 036 addl RBP, #14 # int 039 imull RBP, RBP # int 03c movl R9, R13 # spill 03f addl R9, #13 # int 043 imull R9, R9 # int 047 sall RBP, #1 049 sall R9, #1 04c movl R8, R13 # spill 04f addl R8, #15 # int 053 movl R10, R8 # spill 056 movdl XMM1, R8 # spill 05b imull R10, R8 # int 05f movl R8, R13 # spill 062 addl R8, #12 # int 066 imull R8, R8 # int 06a sall R10, #1 06d movl [rsp + #32], R10 # spill 072 sall R8, #1 075 movl RBX, R13 # spill 078 addl RBX, #11 # int 07b imull RBX, RBX # int 07e movl RCX, R13 # spill 081 addl RCX, #10 # int 084 imull RCX, RCX # int 087 sall RBX, #1 089 sall RCX, #1 08b movl RDX, R13 # spill 08e addl RDX, #8 # int 091 imull RDX, RDX # int 094 movl RDI, R13 # spill 097 addl RDI, #7 # int 09a imull RDI, RDI # int 09d sall RDX, #1 09f sall RDI, #1 0a1 movl RAX, R13 # spill 0a4 addl RAX, #6 # int 0a7 imull RAX, RAX # int 0aa movl RSI, R13 # spill 0ad addl RSI, #4 # int 0b0 imull RSI, RSI # int 0b3 sall RAX, #1 0b5 sall RSI, #1 0b7 movl R10, R13 # spill 0ba addl R10, #2 # int 0be imull R10, R10 # int 0c2 movl R14, R13 # spill 0c5 incl R14 # int 0c8 imull R14, R14 # int 0cc sall R10, #1 0cf sall R14, #1 0d2 addl R14, R11 # int 0d5 addl R14, R10 # int 0d8 movl R10, R13 # spill 0db addl R10, #3 # int 0df imull R10, R10 # int 0e3 movl R11, R13 # spill 0e6 addl R11, #5 # int 0ea imull R11, R11 # int 0ee sall R10, #1 0f1 addl R10, R14 # int 0f4 addl R10, RSI # int 0f7 sall R11, #1 0fa addl R11, R10 # int 0fd addl R11, RAX # int 100 addl R11, RDI # int 103 addl R11, RDX # int 106 movl R10, R13 # spill 109 addl R10, #9 # int 10d imull R10, R10 # int 111 sall R10, #1 114 addl R10, R11 # int 117 addl R10, RCX # int 11a addl R10, RBX # int 11d addl R10, R8 # int 120 addl R9, R10 # int 123 addl RBP, R9 # int 126 addl RBP, [RSP + #32 (32-bit)] # int 12a addl R13, #16 # int 12e movl R11, R13 # spill 131 imull R11, R13 # int 135 sall R11, #1 138 cmpl R13, #999999985 13f jl B2 # loop end P=1.000000 C=6554623.000000
从上面的代码可以看到,有1个寄存器被“spill”到了整个堆栈。
对于2 * i * i版本:
05a B3: # B2 B4 <- B1 B2 Loop: B3-B2 inner main of N18 Freq: 1e+006 05a addl RBX, R11 # int 05d movl [rsp + #32], RBX # spill 061 movl R11, R8 # spill 064 addl R11, #15 # int 068 movl [rsp + #36], R11 # spill 06d movl R11, R8 # spill 070 addl R11, #14 # int 074 movl R10, R9 # spill 077 addl R10, #16 # int 07b movdl XMM2, R10 # spill 080 movl RCX, R9 # spill 083 addl RCX, #14 # int 086 movdl XMM1, RCX # spill 08a movl R10, R9 # spill 08d addl R10, #12 # int 091 movdl XMM4, R10 # spill 096 movl RCX, R9 # spill 099 addl RCX, #10 # int 09c movdl XMM6, RCX # spill 0a0 movl RBX, R9 # spill 0a3 addl RBX, #8 # int 0a6 movl RCX, R9 # spill 0a9 addl RCX, #6 # int 0ac movl RDX, R9 # spill 0af addl RDX, #4 # int 0b2 addl R9, #2 # int 0b6 movl R10, R14 # spill 0b9 addl R10, #22 # int 0bd movdl XMM3, R10 # spill 0c2 movl RDI, R14 # spill 0c5 addl RDI, #20 # int 0c8 movl RAX, R14 # spill 0cb addl RAX, #32 # int 0ce movl RSI, R14 # spill 0d1 addl RSI, #18 # int 0d4 movl R13, R14 # spill 0d7 addl R13, #24 # int 0db movl R10, R14 # spill 0de addl R10, #26 # int 0e2 movl [rsp + #40], R10 # spill 0e7 movl RBP, R14 # spill 0ea addl RBP, #28 # int 0ed imull RBP, R11 # int 0f1 addl R14, #30 # int 0f5 imull R14, [RSP + #36 (32-bit)] # int 0fb movl R10, R8 # spill 0fe addl R10, #11 # int 102 movdl R11, XMM3 # spill 107 imull R11, R10 # int 10b movl [rsp + #44], R11 # spill 110 movl R10, R8 # spill 113 addl R10, #10 # int 117 imull RDI, R10 # int 11b movl R11, R8 # spill 11e addl R11, #8 # int 122 movdl R10, XMM2 # spill 127 imull R10, R11 # int 12b movl [rsp + #48], R10 # spill 130 movl R10, R8 # spill 133 addl R10, #7 # int 137 movdl R11, XMM1 # spill 13c imull R11, R10 # int 140 movl [rsp + #52], R11 # spill 145 movl R11, R8 # spill 148 addl R11, #6 # int 14c movdl R10, XMM4 # spill 151 imull R10, R11 # int 155 movl [rsp + #56], R10 # spill 15a movl R10, R8 # spill 15d addl R10, #5 # int 161 movdl R11, XMM6 # spill 166 imull R11, R10 # int 16a movl [rsp + #60], R11 # spill 16f movl R11, R8 # spill 172 addl R11, #4 # int 176 imull RBX, R11 # int 17a movl R11, R8 # spill 17d addl R11, #3 # int 181 imull RCX, R11 # int 185 movl R10, R8 # spill 188 addl R10, #2 # int 18c imull RDX, R10 # int 190 movl R11, R8 # spill 193 incl R11 # int 196 imull R9, R11 # int 19a addl R9, [RSP + #32 (32-bit)] # int 19f addl R9, RDX # int 1a2 addl R9, RCX # int 1a5 addl R9, RBX # int 1a8 addl R9, [RSP + #60 (32-bit)] # int 1ad addl R9, [RSP + #56 (32-bit)] # int 1b2 addl R9, [RSP + #52 (32-bit)] # int 1b7 addl R9, [RSP + #48 (32-bit)] # int 1bc movl R10, R8 # spill 1bf addl R10, #9 # int 1c3 imull R10, RSI # int 1c7 addl R10, R9 # int 1ca addl R10, RDI # int 1cd addl R10, [RSP + #44 (32-bit)] # int 1d2 movl R11, R8 # spill 1d5 addl R11, #12 # int 1d9 imull R13, R11 # int 1dd addl R13, R10 # int 1e0 movl R10, R8 # spill 1e3 addl R10, #13 # int 1e7 imull R10, [RSP + #40 (32-bit)] # int 1ed addl R10, R13 # int 1f0 addl RBP, R10 # int 1f3 addl R14, RBP # int 1f6 movl R10, R8 # spill 1f9 addl R10, #16 # int 1fd cmpl R10, #999999985 204 jl B2 # loop end P=1.000000 C=7419903.000000
出于保存中间结果的需要,这里出现了更多的“spill”及堆栈[RSP + ...]访问。
问题的答案很简单:2 *(i * i)比2 * i * i更快,因为针对前者JIT生成的汇编代码更优化。
但是,显然这两个版本都不够好。由于x86-64 CPU都至少支持SSE2,因此循环可以从向量化中受益。
因此,这是optimizer的问题:通常循环过度展开会带来问题,错失其他优化机会。
实际上,现代x86-64 CPU会把指令进一步细分为微操作(μops)。循环优化可以借助寄存器重命名、μop缓存和循环缓冲区等众多特性,而不是仅仅做一次展开。根据Agner Fog的优化指南:
如果平均指令长度超过4字节,由于μop缓存而导致的性能提升会非常可观。可以考虑下列方法优化μop缓存:
- 确保关键循环足够小以适应μop缓存。
- 将最关键的循环条目和功能条目以32对齐。
- 避免不必要的循环展开。
- 避免使用需要额外加载时间的指令:..
考虑到加载时间:即使命中最快的L1D也要花费4个周期,需要一个额外的寄存器和μop。只要对存储器访问,哪怕几次也会损害循环的性能。
再考虑矢量化方案:要了解优化能达到多快,可以使用GCC编译类似的C应用程序,直接对其进行矢量化(下面展示了AVX2、SSE2结果):
vmovdqa ymm0, YMMWORD PTR .LC0[rip] vmovdqa ymm3, YMMWORD PTR .LC1[rip] xor eax, eax vpxor xmm2, xmm2, xmm2 .L2: vpmulld ymm1, ymm0, ymm0 inc eax vpaddd ymm0, ymm0, ymm3 vpslld ymm1, ymm1, 1 vpaddd ymm2, ymm2, ymm1 cmp eax, 125000000 ; 8 calculations per iteration jne .L2 vmovdqa xmm0, xmm2 vextracti128 xmm2, ymm2, 1 vpaddd xmm2, xmm0, xmm2 vpsrldq xmm0, xmm2, 8 vpaddd xmm0, xmm2, xmm0 vpsrldq xmm1, xmm0, 4 vpaddd xmm0, xmm0, xmm1 vmovd eax, xmm0 vzeroupper
运行时间:
- SSE:0.24 s,大约快2倍。
- AVX:0.15 s,大约快3倍。
- AVX2:0.08 s,大约快5倍。
- 要输出JIT生成的程序集,请获取JVM调试版本,并使用-XX:+ PrintOptoAssembly运行。
- C程序版本使用-fwrapv标志进行编译,该标志使GCC可以将带符号整数溢出视为二进制补码。
相关推荐
- 快递查询教程,批量查询物流,一键管理快递
-
作为商家,每天需要查询许许多多的快递单号,面对不同的快递公司,有没有简单一点的物流查询方法呢?小编的回答当然是有的,下面随小编一起来试试这个新技巧。需要哪些工具?安装一个快递批量查询高手快递单号怎么快...
- 一键自动查询所有快递的物流信息 支持圆通、韵达等多家快递
-
对于各位商家来说拥有一个好的快递软件,能够有效的提高自己的工作效率,在管理快递单号的时候都需要对单号进行表格整理,那怎么样能够快速的查询所有单号信息,并自动生成表格呢?1、其实方法很简单,我们不需要一...
- 快递查询单号查询,怎么查物流到哪了
-
输入单号怎么查快递到哪里去了呢?今天小编给大家分享一个新的技巧,它支持多家快递,一次能查询多个单号物流,还可对查询到的物流进行分析、筛选以及导出,下面一起来试试。需要哪些工具?安装一个快递批量查询高手...
- 3分钟查询物流,教你一键批量查询全部物流信息
-
很多朋友在问,如何在短时间内把单号的物流信息查询出来,查询完成后筛选已签收件、筛选未签收件,今天小编就分享一款物流查询神器,感兴趣的朋友接着往下看。第一步,运行【快递批量查询高手】在主界面中点击【添...
- 快递单号查询,一次性查询全部物流信息
-
现在各种快递的查询方式,各有各的好,各有各的劣,总的来说,还是有比较方便的。今天小编就给大家分享一个新的技巧,支持多家快递,一次能查询多个单号的物流,还能对查询到的物流进行分析、筛选以及导出,下面一起...
- 快递查询工具,批量查询多个快递快递单号的物流状态、签收时间
-
最近有朋友在问,怎么快速查询单号的物流信息呢?除了官网,还有没有更简单的方法呢?小编的回答当然是有的,下面一起来看看。需要哪些工具?安装一个快递批量查询高手多个京东的快递单号怎么快速查询?进入快递批量...
- 快递查询软件,自动识别查询快递单号查询方法
-
当你拥有多个快递单号的时候,该如何快速查询物流信息?比如单号没有快递公司时,又该如何自动识别再去查询呢?不知道如何操作的宝贝们,下面随小编一起来试试。需要哪些工具?安装一个快递批量查询高手快递单号若干...
- 教你怎样查询快递查询单号并保存物流信息
-
商家发货,快递揽收后,一般会直接手动复制到官网上一个个查询物流,那么久而久之,就会觉得查询变得特别繁琐,今天小编给大家分享一个新的技巧,下面一起来试试。教程之前,我们来预览一下用快递批量查询高手...
- 简单几步骤查询所有快递物流信息
-
在高峰期订单量大的时候,可能需要一双手当十双手去查询快递物流,但是由于逐一去查询,效率极低,追踪困难。那么今天小编给大家分享一个新的技巧,一次能查询多个快递单号的物流,下面一起来学习一下,希望能给大家...
- 物流单号查询,如何查询快递信息,按最后更新时间搜索需要的单号
-
最近有很多朋友在问,如何通过快递单号查询物流信息,并按最后更新时间搜索出需要的单号呢?下面随小编一起来试试吧。需要哪些工具?安装一个快递批量查询高手快递单号若干怎么快速查询?运行【快递批量查询高手】...
- 连续保存新单号功能解析,导入单号查询并自动识别批量查快递信息
-
快递查询已经成为我们日常生活中不可或缺的一部分。然而,面对海量的快递单号,如何高效、准确地查询每一个快递的物流信息,成为了许多人头疼的问题。幸运的是,随着科技的进步,一款名为“快递批量查询高手”的软件...
- 快递查询教程,快递单号查询,筛选更新量为1的单号
-
最近有很多朋友在问,怎么快速查询快递单号的物流,并筛选出更新量为1的单号呢?今天小编给大家分享一个新方法,一起来试试吧。需要哪些工具?安装一个快递批量查询高手多个快递单号怎么快速查询?运行【快递批量查...
- 掌握批量查询快递动态的技巧,一键查找无信息记录的两种方法解析
-
在快节奏的商业环境中,高效的物流查询是确保业务顺畅运行的关键。作为快递查询达人,我深知时间的宝贵,因此,今天我将向大家介绍一款强大的工具——快递批量查询高手软件。这款软件能够帮助你批量查询快递动态,一...
- 从复杂到简单的单号查询,一键清除单号中的符号并批量查快递信息
-
在繁忙的商务与日常生活中,快递查询已成为不可或缺的一环。然而,面对海量的单号,逐一查询不仅耗时费力,还容易出错。现在,有了快递批量查询高手软件,一切变得简单明了。只需一键,即可搞定单号查询,一键处理单...
- 物流单号查询,在哪里查询快递
-
如果在快递单号多的情况,你还在一个个复制粘贴到官网上手动查询,是一件非常麻烦的事情。于是乎今天小编给大家分享一个新的技巧,下面一起来试试。需要哪些工具?安装一个快递批量查询高手快递单号怎么快速查询?...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)