Python 任务自动化神器,10 分钟 invoke 入门教程
liebian365 2024-10-19 07:56 19 浏览 0 评论
接着前面的《tox 教程》,以及刚翻译好的《nox文档》,我们继续聊聊 Python 任务自动化的话题。
nox 的作者在去年的 Pycon US 上,做了一场题为《Break the Cycle: Three excellent Python tools to automate repetitive tasks》的分享(B站观看地址:https://b23.tv/av86640235),她介绍了三个任务自动化工具:tox、nox 和 invoke,本文的话题正好就是最后的 invoke。
1、invoke 可以做什么?
invoke 是从著名的远程部署工具 Fabric 中分离出来的,它与 paramiko 一起是 Fabric 的两大最核心的基础组件。
除了作为命令行工具,它专注于“任务执行”(task execution),可以标注和组织任务,并通过 CLI(command-line interface,即命令行界面) 和 shell 命令来执行任务。
同样是任务自动化工具,invoke 与我们之前介绍过的 tox/nox 在侧重点上有所不同:
- tox/nox 主要是在打包、测试、持续集成等方面的自动化(当然它们能做的还不止于此)
- invoke 则更具普遍性,可以用在任何需要“执行任务”的场景,可以是无相关性的任务组,也可以是有顺序依赖的分步骤的工作流
invoke 在 Github 上有 2.7K star,十分受欢迎,接下来我们看看它如何使用?
2、怎么使用 invoke?
首先,安装很简单:pip install invoke。
其次,简单使用时有以下要素:
- 任务文件。创建一个 tasks.py 文件。
- @task 装饰器。在一个函数上添加 @task 装饰器,即可将该函数标记为一个任务,接受 invoke 的调度管理。
- 上下文参数。给被装饰的函数添加一个上下文参数(context argument),注意它必须作为第一个参数,而命名按约定可以是c 或ctx 或context 。
- 命令行执行。在命令行中执行invoke --list 来查看所有任务,运行invoke xxx 来执行名为 xxx 的任务。命令行中的“invoke”可以简写成“inv”。
以下是一个简单的示例:
#?文件名:tasks.py
from?invoke?import?task
@task
def?hello(c):
????print("Hello?world!")
@task
def?greet(c,?name):
????c.run(f"echo?{name}加油!")
在上述代码中,我们定义了两个任务:
- ”hello“任务调用了 Python 内置的 print 函数,会打印一个字符串“Hello world!”
- “greet”任务调用了上下文参数的 run() 方法,可以执行 shell 命令,同时本例中还可以接收一个参数。在 shell 命令中,echo 可理解成打印,所以这也是一个打印任务,会打印出“xxx加油!”(xxx 是我们传的参数)
以上代码写在 tasks.py 文件中,首先导入装饰器 from invoke import task,@task 装饰器可以不带参数,也可以带参数(参见下一节),被它装饰了的函数就是一个任务。
上下文参数(即上例的“c”)必须要显式地指明,如果缺少这个参数,执行时会抛出异常:“TypeError: Tasks must have an initial Context argument!”
然后在 tasks.py 文件的同级目录中,打开命令行窗口,执行命令。如果执行的位置找不到这个任务文件,则会报错:“Can't find any collection named 'tasks'!”
正常情况下,通过执行inv --list 或者inv -l ,可以看到所有任务的列表(按字母表顺序排序):
>>>?inv?-l
Available?tasks:
??greet
??hello
我们依次执行这两个任务,其中传参时可以默认按位置参数传参,也可以指定关键字传参。结果是:
>>>?inv?hello
Hello?world!
>>>?inv?greet?武汉
武汉加油!
>>>?inv?greet?--name="武汉"
武汉加油!
缺少传参时,报错:'greet' did not receive required positional arguments: 'name';多余传参时,报错:No idea what '???' is!
3、 如何用好 invoke?
介绍完 invoke 的简单用法,我们知道了它所需的几项要素,也大致知道了它的使用步骤,接下来是它的其它用法。
3.1 添加帮助信息
在上例中,“inv -l”只能看到任务名称,缺少必要的辅助信息,为了加强可读性,我们可以这样写:
@task(help={'name':?'A?param?for?test'})
def?greet(c,?name):
????"""
????A?test?for?shell?command.
????Second?line.
????"""
????c.run(f"echo?{name}加油!")
其中,文档字符串的第一行内容会作为摘录,在“inv -l”的查询结果中展示,而且完整的内容与 @task 的 help 内容,会对应在“inv --help”中展示:
>>>?inv?-l
Available?tasks:
??greet???A?test?for?shell?command.
>>>?inv?--help?greet
Usage:?inv[oke]?[--core-opts]?greet?[--options]?[other?tasks?here?...]
Docstring:
??A?test?for?shell?command.
??Second?line.
Options:
??-n?STRING,?--name=STRING???A?param?for?test
3.2 任务的分解与组合
通常一个大任务可以被分解成一组小任务,反过来,一系列的小任务也可能被串连成一个大任务。在对任务作分解、抽象与组合时,这里有两种思路:
- 对内分解,对外统一:只定义一个 @task 的任务,作为总体的任务入口,实际的处理逻辑可以抽象成多个方法,但是外部不感知到它们
- 多点呈现,单点汇总:定义多个 @task 的任务,外部可以感知并分别调用它们,同时将有关联的任务组合起来,调用某个任务时,也执行其它相关联的任务
第一种思路很容易理解,实现与使用都很简单,但是其缺点是缺少灵活性,难于单独执行其中的某个/些子任务。适用于相对独立的单个任务,通常也不需要 invoke 就能做到(使用 invoke 的好处是,拥有命令行的支持)。
第二种思路更加灵活,既方便单一任务的执行,也方便多任务的组合执行。实际上,这种场景才是 invoke 发挥最大价值的场景。
那么,invoke 如何实现分步任务的组合呢?可以在 @task 装饰器的“pre”与“post”参数中指定,分别表示前置任务与后置任务:
@task
def?clean(c):
????c.run("echo?clean")
@task
def?message(c):
????c.run("echo?message")
@task(pre=[clean],?post=[message])
def?build(c):
????c.run("echo?build")
clean 与 message 任务作为子任务,可以单独调用,也可以作为 build 任务的前置与后置任务而组合使用:
>>>?inv?clean
clean
>>>?inv?message
message
>>>?inv?build
clean
build
message
这两个参数是列表类型,即可设置多个任务。另外,在默认情况下,@task 装饰器的位置参数会被视为前置任务,接着上述代码,我们写一个:
@task(clean,?message)
def?test(c):
????c.run("echo?test")
然后执行,会发现两个参数都被视为了前置任务:
>>>?inv?test
clean
message
test
3.3 模块的拆分与整合
如果要管理很多相对独立的大型任务,或者需要多个团队分别维护各自的任务,那么,就有必要对 tasks.py 作拆分与整合。
例如,现在有多份 tasks.py,彼此是相对完整而独立的任务模块,不方便把所有内容都放在一个文件中,那么,如何有效地把它们整合起来管理呢?
invoke 提供了这方面的支持。首先,只能保留一份名为“tasks.py”的文件,其次,在该文件中导入其它改名后的任务文件,最后,使用 invoke 的 Collection 类把它们关联起来。
我们把本文中第一个示例文件改名为 task1.py,并新建一个 tasks.py 文件,内容如下:
#?文件名:tasks.py
from?invoke?import?Collection,?task
import?task1
@task
def?deploy(c):
????c.run("echo?deploy")
namespace?=?Collection(task1,?deploy)
每个 py 文件拥有独立的命名空间,而在此处,我们用 Collection 可以创建出一个新的命名空间,从而实现对所有任务的统一管理。效果如下:
>>>?inv?-l
Available?tasks:
??deploy
??task1.greet
??task1.hello
>>>?inv?deploy
deploy
>>>?inv?task1.hello
Hello?world!
>>>?inv?task1.greet?武汉
武汉加油!
关于不同任务模块的导入、嵌套、混合、起别名等内容,还有不少细节,请查阅官方文档了解。
3.4 交互式操作
某些任务可能需要交互式的输入,例如要求输入“y”,按回车键后才会继续执行。如果在任务执行期间需要人工参与,那自动化任务的能力将大打折扣。
invoke 提供了在程序运行期的监控能力,可以监听stdout 和stderr ,并支持在stdin 中输入必要的信息。
例如,假设某个任务(excitable-program)在执行时会提示“Are you ready? [y/n]”,只有输入了“y”并按下回车键,才会执行后续的操作。
那么,在代码中指定 responses 参数的内容,只要监听到匹配信息,程序会自动执行相应的操作:
responses?=?{r"Are?you?ready??\[y/n\]?":?"y\n"}
ctx.run("excitable-program",?responses=responses)
responses 是字典类型,键值对分别为监听内容及其回应内容。需注意,键值会被视为正则表达式,所以像本例中的方括号就要先转义。
3.5 作为命令行工具库
Python 中有不少好用的命令行工具库,比如标准库中的argparse、Flask 作者开源的click 与谷歌开源的fire 等等,而 invoke 也可以作为命令行工具库使用。
(PS:有位 Prodesire 同学写了“Python 命令行之旅”的系列文章,详细介绍了其它几个命令行工具库的用法,我在公众号“Python猫”里转载过大部分,感兴趣的同学可查看历史文章。)
事实上,Fabric 项目最初把 invoke 分离成独立的库,就是想让它承担解析命令行与执行子命令的任务。所以,除了作为自动化任务管理工具,invoke 也可以被用于开发命令行工具。
官方文档中给出了一个示例,我们可以了解到它的基本用法。
假设我们要开发一个 tester 工具,让用户pip install tester 安装,而此工具提供两个执行命令:tester unit 和tester intergration 。
这两个子命令需要在 tasks.py 文件中定义:
#?tasks.py
from?invoke?import?task
@task
def?unit(c):
????print("Running?unit?tests!")
@task
def?integration(c):
????print("Running?integration?tests!")
然后在程序入口文件中引入它:
#?main.py
from?invoke?import?Collection,?Program
from?tester?import?tasks
program?=?Program(namespace=Collection.from_module(tasks),?version='0.1.0')
最后在打包文件中声明入口函数:
#?setup.py
setup(
????name='tester',
????version='0.1.0',
????packages=['tester'],
????install_requires=['invoke'],
????entry_points={
????????'console_scripts':?['tester?=?tester.main:program.run']
????}
)
如此打包发行的库,就是一个功能齐全的命令行工具了:
$?tester?--version
Tester?0.1.0
$?tester?--help
Usage:?tester?[--core-opts]?<subcommand>?[--subcommand-opts]?...
Core?options:
??...?core?options?here,?minus?task-related?ones?...
Subcommands:
??unit
??integration
$?tester?--list
No?idea?what?'--list'?is!
$?tester?unit
Running?unit?tests!
上手容易,开箱即用,invoke 不失为一款可以考虑的命令行工具库。更多详细用法,请查阅文档 。
4、小结
invoke 作为从 Fabric 项目中分离出来的独立项目,它自身具备一些完整而强大的功能,除了可用于开发命令行工具,它还是著名的任务自动化工具。
本文介绍了它的基础用法与 5 个方面的中级内容,相信读者们会对它产生一定的了解。invoke 的官方文档十分详尽,限于篇幅,本文不再详细展开,若感兴趣,请自行查阅文档哦。
--------------
公众号:Python猫(ID: python_cat)
头条号:Python猫
知乎:豌豆花下猫
掘金:豌豆花下猫
相关推荐
- 4万多吨豪华游轮遇险 竟是因为这个原因……
-
(观察者网讯)4.7万吨豪华游轮搁浅,竟是因为油量太低?据观察者网此前报道,挪威游轮“维京天空”号上周六(23日)在挪威近海发生引擎故障搁浅。船上载有1300多人,其中28人受伤住院。经过数天的调...
- “菜鸟黑客”必用兵器之“渗透测试篇二”
-
"菜鸟黑客"必用兵器之"渗透测试篇二"上篇文章主要针对伙伴们对"渗透测试"应该如何学习?"渗透测试"的基本流程?本篇文章继续上次的分享,接着介绍一下黑客们常用的渗透测试工具有哪些?以及用实验环境让大家...
- 科幻春晚丨《震动羽翼说“Hello”》两万年星间飞行,探测器对地球的最终告白
-
作者|藤井太洋译者|祝力新【编者按】2021年科幻春晚的最后一篇小说,来自大家喜爱的日本科幻作家藤井太洋。小说将视角放在一颗太空探测器上,延续了他一贯的浪漫风格。...
- 麦子陪你做作业(二):KEGG通路数据库的正确打开姿势
-
作者:麦子KEGG是通路数据库中最庞大的,涵盖基因组网络信息,主要注释基因的功能和调控关系。当我们选到了合适的候选分子,单变量研究也已做完,接着研究机制的时便可使用到它。你需要了解你的分子目前已有哪些...
- 知存科技王绍迪:突破存储墙瓶颈,详解存算一体架构优势
-
智东西(公众号:zhidxcom)编辑|韦世玮智东西6月5日消息,近日,在落幕不久的GTIC2021嵌入式AI创新峰会上,知存科技CEO王绍迪博士以《存算一体AI芯片:AIoT设备的算力新选择》...
- 每日新闻播报(September 14)_每日新闻播报英文
-
AnOscarstatuestandscoveredwithplasticduringpreparationsleadinguptothe87thAcademyAward...
- 香港新巴城巴开放实时到站数据 供科技界研发使用
-
中新网3月22日电据香港《明报》报道,香港特区政府致力推动智慧城市,鼓励公私营机构开放数据,以便科技界研发使用。香港运输署21日与新巴及城巴(两巴)公司签署谅解备忘录,两巴将于2019年第3季度,开...
- 5款不容错过的APP: Red Bull Alert,Flipagram,WifiMapper
-
本周有不少非常出色的app推出,鸵鸟电台做了一个小合集。亮相本周榜单的有WifiMapper's安卓版的app,其中包含了RedBull的一款新型闹钟,还有一款可爱的怪物主题益智游戏。一起来看看我...
- Qt动画效果展示_qt显示图片
-
今天在这篇博文中,主要实践Qt动画,做一个实例来讲解Qt动画使用,其界面如下图所示(由于没有录制为gif动画图片,所以请各位下载查看效果):该程序使用应用程序单窗口,主窗口继承于QMainWindow...
- 如何从0到1设计实现一门自己的脚本语言
-
作者:dong...
- 三年级语文上册 仿写句子 需要的直接下载打印吧
-
描写秋天的好句好段1.秋天来了,山野变成了美丽的图画。苹果露出红红的脸庞,梨树挂起金黄的灯笼,高粱举起了燃烧的火把。大雁在天空一会儿写“人”字,一会儿写“一”字。2.花园里,菊花争奇斗艳,红的似火,粉...
- C++|那些一看就很简洁、优雅、经典的小代码段
-
目录0等概率随机洗牌:1大小写转换2字符串复制...
- 二年级上册语文必考句子仿写,家长打印,孩子照着练
-
二年级上册语文必考句子仿写,家长打印,孩子照着练。具体如下:...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- wireshark怎么抓包 (75)
- qt sleep (64)
- cs1.6指令代码大全 (55)
- factory-method (60)
- sqlite3_bind_blob (52)
- hibernate update (63)
- c++ base64 (70)
- nc 命令 (52)
- wm_close (51)
- epollin (51)
- sqlca.sqlcode (57)
- lua ipairs (60)
- tv_usec (64)
- 命令行进入文件夹 (53)
- postgresql array (57)
- statfs函数 (57)
- .project文件 (54)
- lua require (56)
- for_each (67)
- c#工厂模式 (57)
- wxsqlite3 (66)
- dmesg -c (58)
- fopen参数 (53)
- tar -zxvf -c (55)
- 速递查询 (52)